Factoriality of certain hypersurfaces of P4 with ordinary double points

被引:0
作者
Ciliberto, C [1 ]
Di Gennaro, V [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
来源
ALGEBRAIC TRANSFORMATION GROUPS AND ALGEBRAIC VARIETIES | 2004年 / 132卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V subset of P-4 be a reduced and irreducible hypersurface of degree k greater than or equal to 3, whose singular locus consists of 6 ordinary double points. In this paper we prove that if delta < k/2, or the nodes of V are a set-theoretic intersection of hypersurfaces of degree n < k/2 and delta < (k - 2n)(k - 1)(2) /k, then any projective surface contained in V is a complete intersection on V. In particular V is Q-factorial. We give more precise results for smooth surfaces contained in V.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 7 条
[1]   THE GENUS OF CURVES IN P-4 VERIFYING CERTAIN FLAG CONDITIONS [J].
CHIANTINI, L ;
CILIBERTO, C ;
DIGENNARO, V .
MANUSCRIPTA MATHEMATICA, 1995, 88 (01) :119-134
[2]  
ELLIA P, 1988, LECT NOTES MATH, V1389, P43
[3]  
ELLIS HC, 1989, J SOC BEHAV PERS, V4, P1
[4]   THE IDEAL OF FORMS VANISHING AT A FINITE-SET OF POINTS IN PN [J].
GERAMITA, AV ;
MAROSCIA, P .
JOURNAL OF ALGEBRA, 1984, 90 (02) :528-555
[5]   THE GENUS OF SPACE-CURVES [J].
HARRIS, J .
MATHEMATISCHE ANNALEN, 1980, 249 (03) :191-204
[6]  
MIYAOKA Y, 1997, DMV SEM, V26
[7]  
[No title captured]