On the Cheeger problem for rotationally invariant domains

被引:5
作者
Bobkov, Vladimir [1 ,2 ]
Parini, Enea [3 ]
机构
[1] Univ West Bohemia, Dept Math & NTIS, Fac Appl Sci, Univ 8, Plzen 30100, Czech Republic
[2] RAS, Ufa Fed Res Ctr, Inst Math, Chernyshevsky Str 112, Ufa 450008, Russia
[3] Aix Marseille Univ, CNRS, Cent Marseille, I2M, 39 Rue Frederic Joliot Curie, F-13453 Marseille, France
关键词
SETS; REGULARITY; UNIQUENESS; CONSTANT;
D O I
10.1007/s00229-020-01260-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the properties of the Cheeger sets of rotationally invariant, bounded domains Omega subset of R-n. For a rotationally invariant Cheeger set C, the free boundary partial derivative C boolean AND Omega consists of pieces of Delaunay surfaces, which are rotationally invariant surfaces of constant mean curvature. We show that if Omega is convex, then the free boundary of C consists only of pieces of spheres and nodoids. This result remains valid for nonconvex domains when the generating curve of C is closed, convex, and of class C-1,C-1. Moreover, we provide numerical evidence of the fact that, for general nonconvex domains, pieces of unduloids or cylinders can also appear in the free boundary of C.
引用
收藏
页码:503 / 522
页数:20
相关论文
共 26 条
[1]   Surfaces of revolution in n dimensions [J].
Aberra, Dawit ;
Agrawal, Krishan .
INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2007, 38 (06) :843-852
[2]   A characterization of convex calibrable sets in IRN [J].
Alter, F ;
Caselles, V ;
Chambolle, A .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :329-366
[3]   Uniqueness of the Cheeger set of a convex body [J].
Alter, Francois ;
Caselles, Vicent .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :32-44
[4]   Explicit solutions of the eigenvalue problem -div(Du/|Du|) = u in R2 [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1095-1129
[5]   On the higher Cheeger problem [J].
Bobkov, Vladimir ;
Parini, Enea .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 :575-600
[6]   Some Remarks on Uniqueness and Regularity of Cheeger Sets [J].
Caselles, V. ;
Chambolle, A. ;
Novaga, M. .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2010, 123 :191-201
[7]   On the Minimization of Total Mean Curvature [J].
Dalphin, J. ;
Henrot, A. ;
Masnou, S. ;
Takahashi, T. .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) :2729-2750
[8]  
Demengel F., 2004, APPL ANAL, V83, P865, DOI [DOI 10.1080/00036810310001621369, 10.1080/00036810310001621369]
[9]   ON THE REGULARITY OF BOUNDARIES OF SETS MINIMIZING PERIMETER WITH A VOLUME CONSTRAINT [J].
GONZALEZ, E ;
MASSARI, U ;
TAMANINI, I .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :25-37
[10]  
HSIANG WY, 1981, J DIFFER GEOM, V16, P161, DOI 10.4310/jdg/1214436094