Empirical likelihood ratio under infinite second moment

被引:3
作者
Cheng, Conghua [1 ,2 ]
Liu, Yiming [3 ]
Liu, Zhi [4 ,5 ]
机构
[1] Zhaoqing Univ, Sch Math & Stat, Zhaoqing, Guangdong, Peoples R China
[2] Lingnan Normal Univ, Sch Math & Stat, Zhanjiang, Guangdong, Peoples R China
[3] Nanyang Technol Univ, Div Math Sci, Singapore, Singapore
[4] Univ Macau, Dept Math, Taipa, Macau Sar, Peoples R China
[5] UMacau Res Inst, Zhuhai, Peoples R China
关键词
Confidence interval; Domain of attraction of normal law; Empirical likelihood; Infinite variance; 62B05; 62G30; ASYMPTOTICS;
D O I
10.1080/03610926.2016.1139135
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we show that the log empirical likelihood ratio statistic for the population mean converges in distribution to (2)((1)) as n when the population is in the domain of attraction of normal law but has infinite variance. The simulation results show that the empirical likelihood ratio method is applicable under the infinite second moment condition.
引用
收藏
页码:6909 / 6915
页数:7
相关论文
共 5 条
[1]  
Gine E, 1997, ANN PROBAB, V25, P1514
[2]   EMPIRICAL LIKELIHOOD RATIO CONFIDENCE-REGIONS [J].
OWEN, A .
ANNALS OF STATISTICS, 1990, 18 (01) :90-120
[3]   ASYMPTOTICS FOR MULTIVARIATE T-STATISTIC AND HOTELLING T(2)-STATISTIC UNDER INFINITE 2ND-MOMENTS VIA BOOTSTRAPPING [J].
SEPANSKI, SJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 49 (01) :41-54
[4]   Asymptotics for multivariate t-statistic for random vectors in the generalized domain of attraction of the multivariate normal law [J].
Sepanski, SJ .
STATISTICS & PROBABILITY LETTERS, 1996, 30 (02) :179-188
[5]   New estimators of spectral distributions of Wigner matrices [J].
Zhou, Wang .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)