ON CRAMER-RAO LOWER BOUNDS WITH RANDOM EQUALITY CONSTRAINTS

被引:0
|
作者
Prevost, C. [1 ]
Chaumette, E. [2 ]
Usevich, K. [1 ]
Brie, D. [1 ]
Comon, P. [3 ]
机构
[1] Univ Lorraine, CNRS, CRAN, Vandoeuvre Les Nancy, France
[2] Univ Toulouse Isae Supaero, Toulouse, France
[3] Univ Grenoble Alpes, GIPSA Lab, CNRS, St Martin Dheres, France
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
关键词
Mean Squared Error; Deterministic parameters; Constrained Cramer-Rao bound; Random equality constraints; TENSOR DECOMPOSITIONS; PARAMETER-ESTIMATION; PERFORMANCE; FUSION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Numerous works have shown the versatility of deterministic constrained Cramer-Rao bound for estimation performance analysis and design of a system of measurements. Indeed, most of factors impacting the asymptotic estimation performance of the parameters of interest can be taken into account via equality constraints. In this communication, we introduce a new constrained Cramer-Rao-like bound for observations where the probability density function (p.d.f.) parameterized by unknown deterministic parameters results from the marginalization of a joint p.d.f. depending on random variables as well. In this setting, it is now possible to consider random equality constraints, i.e., equality constraints on the unknown deterministic parameters depending on the random parameters, which can not be addressed with the usual constrained Cramer-Rao bound. The usefulness of the proposed bound is illustrated by way of a coupled canonical polyadic model with linear constraints applied to the hyperspectral super-resolution problem.
引用
收藏
页码:5355 / 5359
页数:5
相关论文
共 50 条
  • [1] Cramer-Rao Lower Bounds for UWB Localization with Antenna Array
    Zhang, Qi
    Cao, Wei
    Nallanathan, A.
    2010 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2010,
  • [2] Achieving Cramer-Rao Lower Bounds in Sensor Network Estimation
    Djurovic, Igor
    IEEE SENSORS LETTERS, 2018, 2 (01)
  • [3] Conditional Cramer-Rao Lower Bounds for DOA Estimation and Array Calibration
    Liu, Zhang-Meng
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) : 361 - 364
  • [4] Covariance, subspace, and intrinsic Cramer-Rao bounds
    Smith, ST
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (05) : 1610 - 1630
  • [5] Cramer-Rao Bounds for Compressive Frequency Estimation
    Chen, Xushan
    Zhang, Xiongwei
    Yang, Jibin
    Sun, Meng
    Yang, Weiwei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (03): : 874 - 877
  • [6] Cramer-Rao Lower Bounds of Model-Based Electrocardiogram Parameter Estimation
    Fattahi, Davood
    Sameni, Reza
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3181 - 3192
  • [7] Cramer-Rao lower bounds for sonar broad-band modulation parameters
    Nielsen, RO
    IEEE JOURNAL OF OCEANIC ENGINEERING, 1999, 24 (03) : 285 - 290
  • [8] Cramer-Rao Lower Bounds of TDOA and FDOA Estimation Based on Satellite Signals
    Liu, Mingqian
    Yi, Fei
    Liu, Peng
    Li, Bingbing
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 654 - 657
  • [9] Notes on the Tightness of the Hybrid Cramer-Rao Lower Bound
    Noam, Yair
    Messer, Hagit
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (06) : 2074 - 2084
  • [10] The Cramer-Rao lower bound for bilinear systems
    Zou, QY
    Lin, ZP
    Ober, RJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (05) : 1666 - 1680