Ryanodine receptor calcium release channels

被引:845
作者
Fill, M [1 ]
Copello, JA [1 ]
机构
[1] Loyola Univ, Dept Physiol, Maywood, IL 60153 USA
关键词
D O I
10.1152/physrev.00013.2002
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The ryanodine receptors (RyRs) are a family of Ca2+ release channels found on intracellular Ca2+ storage/release organelles. The RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca2+ signaling phenomena (neurotransmission, secretion, etc.). In striated muscle, the RyR channels represent the primary pathway for Ca2+ release during the excitation-contraction coupling process. In general, the signals that activate the RyR channels are known (e. g., sarcolemmal Ca2+ influx or depolarization), but the specific mechanisms involved are still being debated. The signals that modulate and/or turn off the RyR channels remain ambiguous and the mechanisms involved unclear. Over the last decade, studies of RyR-mediated Ca2+ release have taken many forms and have steadily advanced our knowledge. This robust field, however, is not without controversial ideas and contradictory results. Controversies surrounding the complex Ca2+ regulation of single RyR channels receive particular attention here. In addition, a large body of information is synthesized into a focused perspective of single RyR channel function. The present status of the single RyR channel field and its likely future directions are also discussed.
引用
收藏
页码:893 / 922
页数:30
相关论文
共 372 条
[1]   INTRAMEMBRANE CHARGE MOVEMENT RESTORED IN DYSGENIC SKELETAL-MUSCLE BY INJECTION OF DIHYDROPYRIDINE RECEPTOR CDNAS [J].
ADAMS, BA ;
TANABE, T ;
MIKAMI, A ;
NUMA, S ;
BEAM, KG .
NATURE, 1990, 346 (6284) :569-572
[2]   Intramembrane charge movements and excitation-contraction coupling expressed by two-domain fragments of the Ca2+ channel [J].
Ahern, CA ;
Arikkath, J ;
Vallejo, P ;
Gurnett, CA ;
Powers, PA ;
Campbell, KP ;
Coronado, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6935-6940
[3]   SINGLE-CHANNEL ACTIVITY OF THE RYANODINE RECEPTOR CALCIUM-RELEASE CHANNEL IS MODULATED BY FK-506 [J].
AHERN, GP ;
JUNANKAR, PR ;
DULHUNTY, AF .
FEBS LETTERS, 1994, 352 (03) :369-374
[4]   Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12 [J].
Ahern, GP ;
Junankar, PR ;
Dulhunty, AF .
BIOPHYSICAL JOURNAL, 1997, 72 (01) :146-162
[5]   3 RYANODINE RECEPTOR ISOFORMS EXIST IN AVIAN STRIATED MUSCLES [J].
AIREY, JA ;
GRINSELL, MM ;
JONES, LR ;
SUTKO, JL ;
WITCHER, D .
BIOCHEMISTRY, 1993, 32 (22) :5739-5745
[6]  
AIREY JA, 1990, J BIOL CHEM, V265, P14187
[7]   HIGH-AFFINITY [H-3] PN200-110 AND [H-3] RYANODINE BINDING TO RABBIT AND FROG SKELETAL-MUSCLE [J].
ANDERSON, K ;
COHN, AH ;
MEISSNER, G .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (02) :C462-C466
[8]  
[Anonymous], 1998, STRUCTURE FUNCTION R
[9]   Modal gating in neuronal and skeletal muscle ryanodine-sensitive Ca2+ release channels [J].
Armisen, R ;
Sierralta, J ;
Velez, P ;
Naranjo, D ;
SuarezIsla, BA .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 271 (01) :C144-C153
[10]   TWITCHES IN PRESENCE OF ETHYLENE-GLYCOL BIS(BETA-AMINOETHYL ETHER)-N,N'-TETRAACETIC ACID [J].
ARMSTRONG, CM ;
BEZANILLA, FM ;
HOROWICZ, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1972, 267 (03) :605-+