A hierarchy of hydrodynamic models for plasmas.: Zero-electron-mass limits in the drift-diffusion equations

被引:37
作者
Jüngel, A
Peng, YJ
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
[2] Univ Blaise Pascal, Lab Math Appl, CNRS, UMR 6620, F-63177 Clermont Ferrand, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2000年 / 17卷 / 01期
关键词
plasmas; hydrodynamic equations; quasilinear parabolic equations; asymptotic limits; existence and uniqueness or solutions;
D O I
10.1016/S0294-1449(99)00101-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model hierarchy of hydrodynamic and quasi-hydrodynamic equations for plasmas consisting of electrons and ions is presented. The various model equations are obtained from the transient Euler-Poisson system for electrons and ions in the zero-electron-mass limit and/or in the zero-relaxation-time limit. A rigorous proof of the zero-electron-mass limit in the quasi-hydrodynamic equations is given. This model consists of two parabolic equations for the electrons and ions and the Poisson equation for the electric potential, subject to initial and mixed boundary conditions, The remaining asymptotic limits will be proved in forthcoming publications. Furthermore, the existence of solutions to the limit problem which can be of degenerate type is proved without the assumptions needed for the zero-electron-mass limit (essentially, positivity of the particle densities). Finally, the uniqueness of solutions to the limit problem is studied. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:83 / 118
页数:36
相关论文
共 30 条
[1]  
ANTONTSEV S, 1993, DINAMIKA SPLOSHNOI S, V107, P11
[2]  
BREZIS H, 1993, RMA RES NOTES APPL M, V29, P43
[3]  
Cordier S, 1998, RAIRO-MATH MODEL NUM, V32, P1
[4]  
CRODIER S, 1994, APPL MATH LETT, V8, P19
[5]  
DAVEIGA HB, 1974, J MATH PURE APPL, V53, P279
[6]   Space localization and uniqueness of solutions of a quasilinear parabolic system arising in semiconductor theory [J].
Diaz, JI ;
Galiano, G ;
Jungel, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (03) :267-272
[7]  
DIAZ JI, 2000, UNPUB NONLLIN ANAL T
[8]  
GAGNEUX G, 1992, CR ACAD SCI I-MATH, V314, P605
[9]   NUMERICAL-SIMULATION OF A STEADY-STATE ELECTRON SHOCK-WAVE IN A SUBMICROMETER SEMICONDUCTOR-DEVICE [J].
GARDNER, CL .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1991, 38 (02) :392-398
[10]   Zero-mass-electrons limits in hydrodynamic models for plasmas [J].
Goudon, T .
APPLIED MATHEMATICS LETTERS, 1999, 12 (04) :75-79