Antiphase resonance at X-ray irradiated microregions in amorphous Fe80B20 stripes

被引:2
|
作者
Urdiroz, U. [1 ]
Gomez, A. [2 ]
Magaz, M. [2 ]
Granados, D. [3 ]
Sanchez Agudo, M. [4 ]
Rubio-Zuazo, J. [1 ,5 ]
Castro, G. R. [1 ,5 ]
Stan, C. [6 ]
Tamura, N. [6 ]
Padmore, H. A. [6 ]
Mueller, C. [7 ]
McCord, J. [7 ]
Cebollada, F. [4 ]
Palomares, F. J. [1 ]
Gonzalez, J. M. [1 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid ICMM AE, Madrid 28049, Spain
[2] Ctr Astrobiol CSIC INTA, Torrejon De Ardoz 28850, Spain
[3] IMDEA Nanociencia, Madrid 28049, Spain
[4] Univ Politecn Madrid, Escuela Tecn Super Ingn Telecomunicac, POEMMA CEMDATIC, Madrid 28040, Spain
[5] BM25 SpLine ESRF, F-38043 Grenoble 09, France
[6] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[7] Univ Kiel, Inst Mat Sci, D-24143 Kiel, Germany
关键词
Amorphous Fe80B20; X-ray irradiation; Anisotropy induction; Kerr microscopy inhomogeneous; Ferromagnetic resonance; ANISOTROPY;
D O I
10.1016/j.jmmm.2020.167017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the induction, through X-ray irradiation, of local anisotropy modifications in amorphous Fe80B20 stripes prepared by laser lithography from 15 nm thick films deposited by pulsed laser ablation. Those anisotropy modifications, taking place in a zone having a dimension of 15 mu m around the X-ray beam (2 mu m width) incidence area center point, lead to an effective transverse-to-the-stripe long axis local magnetic easy axis that can be exploited to stably localize a 180 degrees domain wall, in remanence after saturation with a transverse-to the stripe easy axis fie field. Upon stabilizing that wall it is possible to excite spatially inhomogeneous ferromagnetic resonances nearby the irradiated region (IR). The time dependencies of the magnetization precession at both sides of the IR exhibit a uniform phase shift of 180 degrees over distances of the order of 20 mu m from the stabilized domain wall.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Local coercivity at X-ray nanobeam irradiated regions in amorphous Fe80B20 stripes
    Urdiroz, U.
    Navarro, E.
    Sanchez-Agudo, M.
    Cebollada, F.
    Palomares, F. J.
    Martinez Criado, G.
    Gonzalez, J. M.
    AIP ADVANCES, 2021, 11 (01)
  • [2] MOSSBAUER STUDY OF THE IRRADIATED FE80B20 AMORPHOUS ALLOY
    ABLANOV, MB
    ZHANTIKIN, TM
    ZHETBAEV, AK
    SAVOSTYANOV, YG
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1993, 136 (01): : K1 - K4
  • [3] NUCLEAR GAMMA-RESONANCE IN THE AMORPHOUS FE80B20 ALLOY IRRADIATED BY NEUTRONS
    CHEREMISIN, SM
    DUDKIN, AY
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1988, 14 (15): : 1417 - 1420
  • [4] DYNAMIC TEMPERATURE X-RAY DIFFRACTION ANALYSIS OF THE AMORPHOUS Fe80B20 ALLOY.
    Khan, Yunus
    Sotarich, Michael
    Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1981, 72 (04): : 266 - 268
  • [5] CRYSTALLIZATION OF AMORPHOUS FE80B20
    KOSTER, U
    HEROLD, U
    SCRIPTA METALLURGICA, 1978, 12 (01): : 75 - 77
  • [6] POSITRON LIFETIME MEASUREMENTS ON NEUTRON-IRRADIATED AMORPHOUS FE80B20
    AUDOUARD, A
    MOSER, P
    HAUTOJARVI, P
    YLIKAUPPILA, J
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1983, 70 (1-4): : 285 - 289
  • [7] Vibrational dynamics of amorphous Fe80B20
    Gupta, A
    Bhandari, D
    Saxena, NS
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1998, 36 (07) : 366 - 369
  • [8] Simulation of amorphous Fe80B20 structure
    Shpak, A.P.
    Mel'nik, A.B.
    Physics of Metals (English Translation of Metallofizika), 1994, 14 (02):
  • [9] CRYSTALLIZATION OF AMORPHOUS FERROMAGNETIC FE80B20
    LIMBACH, CT
    AUBERTIN, F
    GONSER, U
    PHYSICA B & C, 1988, 149 (1-3): : 263 - 266
  • [10] DYNAMIC TEMPERATURE X-RAY-DIFFRACTION ANALYSIS OF THE AMORPHOUS FE80B20 ALLOY
    KHAN, Y
    SOSTARICH, M
    ZEITSCHRIFT FUR METALLKUNDE, 1981, 72 (04): : 266 - 268