Thicker Clouds and Accelerated Arctic Sea Ice Decline: The Atmosphere-Sea Ice Interactions in Spring

被引:62
作者
Huang, Yiyi [1 ]
Dong, Xiquan [1 ]
Bailey, David A. [2 ]
Holland, Marika M. [2 ]
Xi, Baike [1 ]
DuVivier, Alice K. [2 ]
Kay, Jennifer E. [3 ,4 ]
Landrum, Laura L. [2 ]
Deng, Yi [5 ]
机构
[1] Univ Arizona, Dept Hydrol & Atmospher Sci, Tucson, AZ 85721 USA
[2] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA
[3] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[4] Univ Colorado, CIRES, Boulder, CO 80309 USA
[5] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
Arctic sea ice retreat; atmospheric physical processes; cloud and radiation impact; atmosphere-sea ice coupling; RADIATION PROPERTIES; SURFACE; SYSTEM; MODEL;
D O I
10.1029/2019GL082791
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each other, which one plays the leading role in spring remains unclear. Here we demonstrate, through observational data diagnosis and numerical modeling, that there is active coupling between the atmosphere and sea ice in early spring. Sea ice melting and thus the presence of more open water lead to stronger evaporation and promote cloud formation that increases downward longwave flux, leading to even more ice melt. Spring clouds are a driving force in the disappearance of sea ice and displacing the mechanism of atmosphere-sea ice coupling from April to June. These results suggest the need to accurately model interactions of Arctic clouds and radiation in Earth System Models in order to improve projections of the future of the Arctic.
引用
收藏
页码:6980 / 6989
页数:10
相关论文
共 50 条
[21]   Disentangling the Coupled Atmosphere-Ocean-Ice Interactions Driving Arctic Sea Ice Response to CO2 Increases [J].
Garuba, Oluwayemi A. ;
Singh, Hansi A. ;
Hunke, Elizabeth ;
Rasch, Philip J. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (11)
[22]   The potential of sea ice leads as a predictor for summer Arctic sea ice extent [J].
Zhang, Yuanyuan ;
Cheng, Xiao ;
Liu, Jiping ;
Hui, Fengming .
CRYOSPHERE, 2018, 12 (12) :3747-3757
[23]   Assimilation of Satellite-Retrieved Sea Ice Concentration and Prospects for September Predictions of Arctic Sea Ice [J].
Zhang, Yong-Fei ;
Bushuk, Mitchell ;
Winton, Michael ;
Hurlin, Bill ;
Yang, Xiaosong ;
Delworth, Tom ;
Jia, Liwei .
JOURNAL OF CLIMATE, 2021, 34 (06) :2107-2126
[24]   A survey of the atmospheric physical processes key to the onset of Arctic sea ice melt in spring [J].
Yiyi Huang ;
Xiquan Dong ;
Baike Xi ;
Yi Deng .
Climate Dynamics, 2019, 52 :4907-4922
[25]   Clouds damp the radiative impacts of polar sea ice loss [J].
Alkama, Ramdane ;
Taylor, Patrick C. ;
Garcia-San Martin, Lorea ;
Douville, Herve ;
Duveiller, Gregory ;
Forzieri, Giovanni ;
Swingedouw, Didier ;
Cescatti, Alessandro .
CRYOSPHERE, 2020, 14 (08) :2673-2686
[26]   Investigating Arctic Sea Ice Survivability in the Beaufort Sea [J].
Tooth, Matthew ;
Tschudi, Mark .
REMOTE SENSING, 2018, 10 (02)
[27]   Attribution of late summer early autumn Arctic sea ice decline in recent decades [J].
Yu, Lejiang ;
Zhong, Shiyuan ;
Vihma, Timo ;
Sun, Bo .
NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2021, 4 (01)
[28]   Assessment of the Pan-Arctic Accelerated Rate of Sea Ice Decline in CMIP6 Historical Simulations [J].
Lee, Younjo J. ;
Watts, Matthew ;
Maslowski, Wieslaw ;
Kinney, Jaclyn Clement ;
Osinski, Robert .
JOURNAL OF CLIMATE, 2023, 36 (17) :6069-6089
[29]   Predictability of the Arctic sea ice edge [J].
Goessling, H. F. ;
Tietsche, S. ;
Day, J. J. ;
Hawkins, E. ;
Jung, T. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (04) :1642-1650
[30]   Influence of sea ice on Arctic precipitation [J].
Kopec, Ben G. ;
Feng, Xiahong ;
Michel, Fred A. ;
Posmentier, Eric S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (01) :46-51