Non-uniqueness for specifications in l2+ε

被引:6
作者
Berger, Noam [1 ,2 ]
Hoffman, Christopher [3 ]
Sidoravicius, Vladas [4 ,5 ,6 ]
机构
[1] Tech Univ Munich, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany
[2] Hebrew Univ Jerusalem, Dept Math, Jerusalem, Israel
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
[4] NYU, Courant Inst Math Sci, New York, NY USA
[5] NYU Shanghai, NYU ECNU Inst Math Sci, Shanghai, Peoples R China
[6] Cemaden, Sao Jose Dos Campos, Brazil
关键词
COMPLETE CONNECTIONS; PERCOLATION MODELS; PHASE-TRANSITION; UNIQUENESS; CHAINS; REPRESENTATION; DISCONTINUITY; EXISTENCE;
D O I
10.1017/etds.2016.101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For every p > 2, we construct a regular and continuous specification (g-function), which has a variation sequence that is in l(p) and which admits multiple Gibbs measures. Combined with a result of Johansson and Oberg [Square summability of variations of g-functions and uniqueness in g-measures. Math. Res. Lett. 10(5-6) (2003), 587-601], this determines the optimal modulus of continuity for a specification which admits multiple Gibbs measures.
引用
收藏
页码:1342 / 1352
页数:11
相关论文
共 23 条
[1]   DISCONTINUITY OF THE MAGNETIZATION IN ONE-DIMENSIONAL 1/[X-Y]2 ISING AND POTTS MODELS [J].
AIZENMAN, M ;
CHAYES, JT ;
CHAYES, L ;
NEWMAN, CM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (1-2) :1-40
[2]   DISCONTINUITY OF THE PERCOLATION DENSITY IN ONE-DIMENSIONAL 1[X-Y]2 PERCOLATION MODELS [J].
AIZENMAN, M ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) :611-647
[3]  
[Anonymous], 1972, USPEHI MAT NAUK, DOI 10.1070/RM1972v027n04ABEH001383
[4]  
[Anonymous], 1975, LECT NOTES MATH
[6]   NONUNIQUENESS IN G-FUNCTIONS [J].
BRAMSON, M ;
KALIKOW, S .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 84 (1-2) :153-160
[7]   Uniqueness vs. non-uniqueness for complete connections with modified majority rules [J].
Dias, J. C. A. ;
Friedli, S. .
PROBABILITY THEORY AND RELATED FIELDS, 2016, 164 (3-4) :893-929
[8]  
Doeblin W., 1937, Bull. Soc. Math. France, V65, P132, DOI [10.24033/bsmf.1270, DOI 10.24033/BSMF.1270]
[9]   EXISTENCE OF A PHASE-TRANSITION IN A ONE-DIMENSIONAL ISING FERROMAGNET [J].
DYSON, FJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (02) :91-&
[10]   Chains with complete connections:: General theory, uniqueness, loss of memory and mixing properties [J].
Fernández, R ;
Maillard, G .
JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (3-4) :555-588