Tetrahedra are not reduced

被引:8
作者
Martini, H [1 ]
Wenzel, W [1 ]
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
body of constant width; complete set; equifacial tetrahedron; reduced body;
D O I
10.1016/S0893-9659(02)00057-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A convex body which does not properly contain a convex body with the same minimal width is said to be reduced. It is not known whether there exist reduced n-polytopes, n greater than or equal to 3. We prove that there is no reduced tetrahedron. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:881 / 884
页数:4
相关论文
共 16 条
[1]  
Chakerian G.D., 1983, CONVEXITY ITS APPL, P49
[2]   ON REDUCED CONVEX-BODIES [J].
DEKSTER, BV .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 56 (02) :247-256
[3]  
Dekster BV., 1986, J GEOM, V26, P77, DOI [10.1007/BF01221008, DOI 10.1007/BF01221008]
[4]   ESTIMATES FOR THE MINIMAL WIDTH OF POLYTOPES INSCRIBED IN CONVEX-BODIES [J].
GRITZMANN, P ;
LASSAK, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (06) :627-635
[5]  
GROEMER H, 1986, GEOMETRIAE DEDICATA, V20, P319
[6]   EXTREMAL CONVEX-SETS [J].
GROEMER, H .
MONATSHEFTE FUR MATHEMATIK, 1983, 96 (01) :29-39
[7]  
Heil E., 1993, HDB CONVEX GEOMETRY, P347
[8]  
KUPITZ Y., 1994, J. Geom., V49, P150
[9]   REDUCED CONVEX-BODIES IN THE PLANE [J].
LASSAK, M .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 70 (03) :365-379
[10]   Simplices with equiareal faces [J].
McMullen, P .
DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (2-3) :397-411