The planar directed k-Vertex-Disjoint Paths problem is fixed-parameter tractable

被引:32
作者
Cygan, Marek [1 ]
Marx, Daniel [2 ]
Pilipczuk, Marcin [1 ]
Pilipczuk, Michal [3 ]
机构
[1] Univ Warsaw, Inst Informat, PL-00325 Warsaw, Poland
[2] Hungarian Acad Sci, Insti Comp Sci & Control, Budapest, Hungary
[3] Hungarian Acad Sci, Insti Comp Sci & Control, Budapest, Hungary
来源
2013 IEEE 54TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS) | 2013年
关键词
disjoint paths; fixed parameter tractability; planar graphs; directed graphs; GRAPH MINORS; WIDTH;
D O I
10.1109/FOCS.2013.29
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G and k pairs of vertices (s(1), t(1)),..., (s(k), t(k)), the k-Vertex-Disjoint Paths problem asks for pairwise vertex- disjoint paths P-1,..., P-k such that Pi goes from s(i) to t(i). Schrijver [SICOMP'94] proved that the k-Vertex- Disjoint Paths problem on planar directed graphs can be solved in time n(O(k)). We give an algorithm with running time 2(2O(k2)) . n(O(1)) for the problem, that is, we show the fixed-parameter tractability of the problem.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 29 条
[1]  
Adler I, 2011, LECT NOTES COMPUT SC, V6755, P110, DOI 10.1007/978-3-642-22006-7_10
[2]   The DAG-width of directed graphs [J].
Berwanger, Dietmar ;
Dawar, Anuj ;
Hunter, Paul ;
Kreutzer, Stephan ;
Obdrzalek, Jan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (04) :900-923
[3]  
Bodlaender H. L., 1994, Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, P449, DOI 10.1145/195058.195229
[4]  
Cygan M., 2013, CORR
[5]   Highly connected sets and the excluded grid theorem [J].
Diestel, R ;
Jensen, TR ;
Gorbunov, KY ;
Thomassen, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (01) :61-73
[6]   DISJOINT CYCLES IN DIRECTED-GRAPHS ON THE TORUS AND THE KLEIN BOTTLE [J].
DING, GL ;
SCHRIJVER, A ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 58 (01) :40-45
[7]   DISJOINT PATHS IN A PLANAR GRAPH - A GENERAL THEOREM [J].
DING, GL ;
SCHRIJVER, A ;
SEYMOUR, PD .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (01) :112-116
[8]  
Downey R. G., 1999, MG COMP SCI
[9]   THE DIRECTED SUBGRAPH HOMEOMORPHISM PROBLEM [J].
FORTUNE, S ;
HOPCROFT, J ;
WYLLIE, J .
THEORETICAL COMPUTER SCIENCE, 1980, 10 (02) :111-121
[10]  
Ganian R, 2010, LECT NOTES COMPUT SC, V6478, P135, DOI 10.1007/978-3-642-17493-3_14