Distributed Fault Detection for Interconnected Large-Scale Systems: A Scalable Plug & Play Approach

被引:48
作者
Boem, Francesca [1 ]
Carli, Ruggero [2 ]
Farina, Marcello [3 ]
Ferrari-Trecate, Giancarlo [4 ]
Parisini, Thomas [5 ,6 ,7 ]
机构
[1] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[2] Univ Padua, Dipartimento Ingn Informaz, I-35131 Padua, Italy
[3] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
[4] Ecole Polytech Fed Lausanne, Automat Control Lab, CH-1015 Lausanne, Switzerland
[5] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[6] Univ Cyprus, KIOS Res & Innovat Ctr Excellence, CY-1678 Nicosia, Cyprus
[7] Univ Trieste, Dept Engn & Architecture, I-34127 Trieste, Italy
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2019年 / 6卷 / 02期
基金
瑞士国家科学基金会;
关键词
Distributed state estimation; fault detection; large-scale system; networked control systems; scalable design; KALMAN-FILTER; STATE ESTIMATION; ALGORITHM; NETWORK; DESIGN;
D O I
10.1109/TCNS.2018.2878500
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel distributed fault detection method to monitor the state of a-possibly large scale-linear system, partitioned into interconnected subsystems. The approach hinges on the definition of a partition-based distributed Luenberger-like estimator, based on the local model of the subsystems and that takes into account their dynamic coupling. The proposed methodology computes-in a distributed way-a bound on the variance of a properly defined residual signal. This bound depends on the uncertainty affecting the state estimates computed by the neighboring subsystems and it allows the computation of local fault detection thresholds, as well as the maximum false-alarm rate. The implementation of the proposed estimation and fault detection method is scalable, allowing Plug & Play operations, and the possibility to disconnect the faulty subsystem after fault detection. Theoretical conditions on the convergence properties of the estimates and of the estimation error bounds are provided. Simulation results on a power network benchmark show the effectiveness of the proposed method.
引用
收藏
页码:800 / 811
页数:12
相关论文
共 41 条
[1]  
[Anonymous], 2016, DIAGNOSIS FAULT TOLE, DOI 10.1007/978-3-662-47943-8_10
[2]  
[Anonymous], 2012, ARXIV12072000
[3]   Consensus-Based Linear and Nonlinear Filtering [J].
Battistelli, G. ;
Chisci, L. ;
Mugnai, G. ;
Farina, A. ;
Graziano, A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (05) :1410-1415
[4]   Plug-and-Play Fault Detection and Isolation for Large-Scale Nonlinear Systems With Stochastic Uncertainties [J].
Boem, Francesca ;
Riverso, Stefano ;
Ferrari-Trecate, Giancarlo ;
Parisini, Thomas .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (01) :4-19
[5]   A Distributed Networked Approach for Fault Detection of Large-Scale Systems [J].
Boem, Francesca ;
Ferrari, Riccardo M. G. ;
Keliris, Christodoulos ;
Parisini, Thomas ;
Polycarpou, Marios M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (01) :18-33
[6]  
Boem F, 2016, IEEE DECIS CONTR P, P1285, DOI 10.1109/CDC.2016.7798443
[7]  
Boyd Stephen P., 2014, Convex Optimization
[8]  
Callier F. M., 1991, Linear System Theory
[9]   Diffusion Strategies for Distributed Kalman Filtering and Smoothing [J].
Cattivelli, Federico S. ;
Sayed, Ali H. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (09) :2069-2084
[10]   Consensus plus Innovations Distributed Kalman Filter With Optimized Gains [J].
Das, Subhro ;
Moura, Jose M. F. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (02) :467-481