A Robust Spatiotemporal Forecasting Framework for Photovoltaic Generation
被引:62
作者:
Chai, Songjian
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Shenzhen Res Inst, Dept Elect Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Shenzhen Res Inst, Dept Elect Engn, Hong Kong, Peoples R China
Chai, Songjian
[1
]
Xu, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Shenzhen Res Inst, Dept Elect Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Shenzhen Res Inst, Dept Elect Engn, Hong Kong, Peoples R China
Xu, Zhao
[1
]
Jia, Youwei
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R ChinaHong Kong Polytech Univ, Shenzhen Res Inst, Dept Elect Engn, Hong Kong, Peoples R China
Jia, Youwei
[2
]
Wong, Wai Kin
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Observ, Forecast Dev Div, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Shenzhen Res Inst, Dept Elect Engn, Hong Kong, Peoples R China
Wong, Wai Kin
[3
]
机构:
[1] Hong Kong Polytech Univ, Shenzhen Res Inst, Dept Elect Engn, Hong Kong, Peoples R China
[2] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
[3] Hong Kong Observ, Forecast Dev Div, Hong Kong, Peoples R China
Spatiotemporal phenomena;
Data models;
Predictive models;
Forecasting;
Logic gates;
Contamination;
Pollution measurement;
Spatiotemporal PV forecasts;
deep learning;
correntropy;
robust forecasting;
SOLAR IRRADIANCE;
CORRENTROPY;
MODEL;
PREDICTION;
OUTPUT;
D O I:
10.1109/TSG.2020.3006085
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Deployment of PV generation has been recognized as one of the promising measures taken for mitigating the environmental issues worldwide. To seamlessly integrate PV and other renewables, accurate prediction is imperative to ensure the reliability and economy of the power system. Distinguished from most existing methods, this work presents a novel robust spatiotemporal deep learning framework that can generate the PV forecasts for multiple regions and horizons simultaneously considering corrupted samples. Within this framework, the Convolutional Long Short-Term Memory Neural Network is employed to exploit the temporal trends and spatial correlations of the PV measurements. Besides, given the collected PV measurements might be subject to various data contaminations, the correntropy criterion is integrated to give the unbiased parameter estimation and robust spatiotemporal forecasts. The performance of the proposed correntropy-based deep convolutional recurrent model is evaluated on the synthetic solar PV dataset recorded in 56 locations in U.S. offered by NREL. The comparative study is conducted against benchmarks over different sample contamination types and levels. Experimental results show that the proposed model can achieve the highest robustness among the rivals.
机构:
PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, FrancePSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France
Agoua, Xwegnon Ghislain
Girard, Robin
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, FrancePSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France
Girard, Robin
Kariniotakis, George
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, FrancePSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France
机构:
Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
Chai, Songjian
Xu, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
Xu, Zhao
Wong, Wai Kin
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Observ, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
机构:
PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, FrancePSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France
Agoua, Xwegnon Ghislain
Girard, Robin
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, FrancePSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France
Girard, Robin
Kariniotakis, George
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, FrancePSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France
机构:
Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
Chai, Songjian
Xu, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
Xu, Zhao
Wong, Wai Kin
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Observ, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China