STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
|
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 67卷 / 3-4期
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [41] Ambrosetti-Prodi problems for the Robin (p, q)-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Jian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [42] Existence and Multiplicity of Solutions for a Steklov Eigenvalue Problem Involving The p(x)-Laplacian-like Operator
    Boukhsas, A.
    Karim, B.
    Zerouali, A.
    Chakrone, O.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [43] Resonance problems for (p, q)-Laplacian systems
    Zhao, Xiao-Xiao
    Tang, Chun-Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 1019 - 1030
  • [44] On a class of critical (p, q)-Laplacian problems
    Candito, Pasquale
    Marano, Salvatore A.
    Perera, Kanishka
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06): : 1959 - 1972
  • [45] Superlinear Neumann problems with the p-Laplacian plus an indefinite potential
    Fragnelli, Genni
    Mugnai, Dimitri
    Papageorgiou, Nikolaos S.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 479 - 517
  • [46] On fractional Laplacian problems with indefinite nonlinearity
    Fu, Yongqiang
    Li, Bingliang
    APPLICABLE ANALYSIS, 2017, 96 (16) : 2852 - 2868
  • [47] SOLVABILITY FOR COUPLED IMPULSIVE FRACTIONAL PROBLEMS OF THE KIRCHHOFF TYPE WITH P&Q-LAPLACIAN
    Wang, Yi
    Tian, Lixin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3099 - 3133
  • [48] ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (1-2) : 15 - 28
  • [49] On the first eigenvalue for a (p(x), q(x))-Laplacian elliptic system
    Moussaoui, Abdelkrim
    Velin, Jean
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (66) : 1 - 22
  • [50] One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
    Kaufmann, Uriel
    Medri, Ivan
    ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (03) : 251 - 259