STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
|
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 67卷 / 3-4期
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [31] An Eigenvalue Problem Involving the (p, q)-Laplacian With a Parametric Boundary Condition
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [32] Inverse problems for a class of elliptic obstacle problems involving multivalued convection term and weighted (p, q)-Laplacian
    Zeng, Shengda
    Migorski, Stanislaw
    Khan, Akhtar A.
    Yao, Jen-Chih
    OPTIMIZATION, 2023, 72 (01) : 321 - 349
  • [33] On linear and nonlinear fourth-order eigenvalue problems with indefinite weight
    Ma, Ruyun
    Gao, Chenghua
    Han, Xiaoling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 6965 - 6969
  • [34] Remarks on eigenvalue problems involving the p(x)-Laplacian
    Fan, Xianling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (01) : 85 - 98
  • [35] Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
    El Manouni, Said
    Marino, Greta
    Winkert, Patrick
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 304 - 320
  • [36] Conformal bounds for the first eigenvalue of the (p, q)-Laplacian system
    Kolaei, Mohammad Javad Habibi Vosta
    Azami, Shahroud
    TAMKANG JOURNAL OF MATHEMATICS, 2024, 55 (04): : 371 - 389
  • [37] On a class of critical p(x)-Laplacian type problems with Steklov boundary conditions
    Allaoui, Mostafa
    Darhouche, Omar
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) : 995 - 1011
  • [38] Multiple solutions for asymptotically q-linear (p, q)-Laplacian problems
    Colasuonno, Francesca
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (14) : 8655 - 8673
  • [39] Concave-Convex Problems for the Robin p-Laplacian Plus an Indefinite Potential
    Papageorgiou, Nikolaos S.
    Scapellato, Andrea
    MATHEMATICS, 2020, 8 (03)
  • [40] Bifurcation for indefinite-weighted p-Laplacian problems with slightly subcritical nonlinearity
    Cuesta, Mabel
    Pardo, Rosa
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (11) : 3982 - 4002