STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
|
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 67卷 / 3-4期
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [21] On eigenvalue problems for the p(x)-Laplacian
    Marcos, Aboubacar
    Soninhekpon, Janvier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [22] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Sun, Xueying
    MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) : 353 - 373
  • [23] Anisotropic (p→, q→)-Laplacian problems with superlinear nonlinearities
    Amoroso, Eleonora
    Sciammetta, Angela
    Winkert, Patrick
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (01): : 1 - 23
  • [24] Nonlinear Eigenvalue Problems for the Dirichlet (p,2)-Laplacian
    Bai, Yunru
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    AXIOMS, 2022, 11 (02)
  • [25] One-dimensional p-Laplacian with a strong singular indefinite weight, I.: Eigenvalue
    Kajikiya, Ryuji
    Lee, Yong-Hoon
    Sim, Inbo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (08) : 1985 - 2019
  • [26] THE FIRST EIGENVALUE OF SOME (p, q)-LAPLACIAN AND GEOMETRIC ESTIMATES
    Azami, Shahroud
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01): : 317 - 323
  • [27] An eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1214 - 1223
  • [28] ON SUBLINEAR SINGULAR (P,Q) LAPLACIAN PROBLEMS
    Alreshidi, B.
    Hai, D. D.
    Shivaji, R.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (09) : 2773 - 2783
  • [29] Eigenvalues of the negative (p,q)-Laplacian under a Steklov-like boundary condition
    Barbu, Luminita
    Morosanu, Gheorghe
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (04) : 685 - 700
  • [30] Eigenvalue problems of fractional q-difference equations with generalized p-Laplacian
    Li, Xinhui
    Han, Zhenlai
    Sun, Shurong
    Sun, Liying
    APPLIED MATHEMATICS LETTERS, 2016, 57 : 46 - 53