STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
|
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 67卷 / 3-4期
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [11] On the first eigenvalue of the (p, q)-Laplacian and some related problems
    El Manouni, Said
    Perera, Kanishka
    Winkert, Patrick
    MATHEMATISCHE ZEITSCHRIFT, 2025, 310 (03)
  • [12] Multiple solutions for eigenvalue problems involving the (p, q)-Laplacian
    Pucci, Patrizia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 93 - 108
  • [13] Existence of solutions for (p, q)-Laplacian equations with an indefinite potential
    Kandilakis, Dimitrios A.
    Magiropoulos, Manolis
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (05) : 844 - 855
  • [14] Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
    Vetro, Calogero
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [15] On a Positive Solution for (p, q)-Laplace Equation with Indefinite Weight
    Motreanu, Dumitru
    Tanaka, Mieko
    MINIMAX THEORY AND ITS APPLICATIONS, 2016, 1 (01): : 1 - 20
  • [16] Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
    Calogero Vetro
    Analysis and Mathematical Physics, 2020, 10
  • [17] A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 325 - 345
  • [18] EXISTENCE OF SOLUTIONS TO INDEFINITE QUASILINEAR ELLIPTIC PROBLEMS OF P-Q-LAPLACIAN TYPE
    Sidiropoulos, Nikolaos E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [19] p(x)-LAPLACIAN WITH INDEFINITE WEIGHT
    Kefi, Khaled
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (12) : 4351 - 4360
  • [20] On an eigenvalue problem associated with the (p, q) - Laplacian
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 45 - 64