STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 67卷 / 3-4期
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 30 条
[1]   GENERALIZED EIGENVALUES OF THE (P, 2)-LAPLACIAN UNDER A PARAMETRIC BOUNDARY CONDITION [J].
Abreu, Jamil ;
Madeira, Gustavo F. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (01) :287-303
[2]  
Anane A., 1987, These de Doctorat
[3]  
Anane A., 2009, GLOB J PURE APPL MAT, V5, P217
[4]   Regularity of the solutions to a nonlinear boundary problem with indefinite weight [J].
Anane, Aomar ;
Chakrone, Omar ;
Moradi, Najat .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2011, 29 (01) :17-23
[5]   Nonresonance between the first two eigenvalues for a Steklov problem [J].
Anane, Aomar ;
Chakrone, Omar ;
Karim, Belhadj ;
Zerouali, Abdellah .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2974-2981
[6]   Full description of the eigenvalue set of the Steklov (p, q)-Laplacian [J].
Barbu, Luminita ;
Morosanu, Gheorghe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 :1-16
[7]  
Benouhiba N., 2012, R INT PURE APPL MATH, V50, P727
[8]   On the solutions of the (p, q)-Laplacian problem at resonance [J].
Benouhiba, Nawel ;
Belyacine, Zahia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 :74-81
[9]  
Bocea M, 2016, NODEA-NONLINEAR DIFF, V23, DOI 10.1007/s00030-016-0373-2
[10]  
Boukhsas A., 2022, MATHEMATICA, V64, P201