STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
|
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 67卷 / 3-4期
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [1] Generalized eigenvalue problems for (p, q)-Laplacian with indefinite weight
    Tanaka, Mieko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 1181 - 1192
  • [2] Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian
    Zerouali, A.
    Karim, B.
    Chakrone, O.
    Boukhsas, A.
    AFRIKA MATEMATIKA, 2019, 30 (1-2) : 171 - 179
  • [3] STEKLOV EIGENVALUES PROBLEMS FOR GENERALIZED (p, q)-LAPLACIAN TYPE OPERATORS
    Boukhsas, Abdelmajid
    Ouhamou, Brahim
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 85 : 35 - 51
  • [4] Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian
    A. Zerouali
    B. Karim
    O. Chakrone
    A. Boukhsas
    Afrika Matematika, 2019, 30 : 171 - 179
  • [5] On a Steklov eigenvalue problem associated with the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) : 161 - 171
  • [6] Full description of the eigenvalue set of the Steklov (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 : 1 - 16
  • [7] On a Positive Solutions for (p, q)-Laplacian Steklov Problem with Two Parameters
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [8] Nonlinear eigenvalue problems for the (p, q)-Laplacian
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 172
  • [9] On eigenvalue problems governed by the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 63 - 76
  • [10] Multiple solutions for a (p, q)-Laplacian Steklov problem
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 357 - 368