Random matrix model for antiferromagnetism and superconductivity on a two-dimensional lattice

被引:1
作者
Vanderheyden, Benoit [1 ,2 ]
Jackson, A. D. [3 ]
机构
[1] Univ Liege, Dept Elect Engn & Comp Sci, B-4000 Sart Tilman Par Liege, Belgium
[2] Univ Liege, SUPRATECS, B-4000 Sart Tilman Par Liege, Belgium
[3] Niels Bohr Inst, Niels Bohr Int Acad, DK-2100 Copenhagen, Denmark
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 14期
关键词
antiferromagnetism; exchange interactions (electron); fluctuations in superconductors; free energy; high-temperature superconductors; phase diagrams; quasiparticles; spin fluctuations; DIMENSIONAL HUBBARD-MODEL; QUARK MATTER; FIELD THEORY; MEAN-FIELD; SYMMETRY; MAGNONS; HOLES;
D O I
10.1103/PhysRevB.79.144502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We suggest a new mean-field method for studying the thermodynamic competition between magnetic and superconducting phases in a two-dimensional square lattice. A partition function is constructed by writing microscopic interactions that describe the exchange of density and spin fluctuations. A block structure dictated by spin, time-reversal, and bipartite symmetries is imposed on the single-particle Hamiltonian. The detailed dynamics of the interactions are neglected and replaced by a normal distribution of random matrix elements. The resulting partition function can be calculated exactly. The thermodynamic potential has a structure which depends only on the spectrum of quasiparticles propagating in fixed condensation fields, with coupling constants that can be related directly to the variances of the microscopic processes. The resulting phase diagram reveals a fixed number of phase topologies whose realizations depend on a single coupling parameter ratio, alpha. Most phase topologies are realized for a broad range of values of alpha and can thus be considered robust with respect to moderate variations in the detailed description of the underlying interactions.
引用
收藏
页数:15
相关论文
共 39 条
[11]   Symplectic N and time reversal in frustrated magnetism [J].
Flint, Rebecca ;
Coleman, P. .
PHYSICAL REVIEW B, 2009, 79 (01)
[12]   Phase diagram of QCD [J].
Halasz, MA ;
Jackson, AD ;
Shrock, RE ;
Stephanov, MA ;
Verbaarschot, JJM .
PHYSICAL REVIEW D, 1998, 58 (09)
[13]   Yang-Lee zeros of a random matrix model for QCD at finite density [J].
Halasz, MA ;
Jackson, AD ;
Verbaarschot, JJM .
PHYSICS LETTERS B, 1997, 395 (3-4) :293-297
[14]  
HEISELBERG H, ARXIV08020127
[15]   TWO-DIMENSIONAL HUBBARD-MODEL - NUMERICAL-SIMULATION STUDY [J].
HIRSCH, JE .
PHYSICAL REVIEW B, 1985, 31 (07) :4403-4419
[16]   COEXISTENCE OF ANTIFERROMAGNETISM AND SUPERCONDUCTIVITY IN A MEAN-FIELD THEORY OF HIGH-TC SUPERCONDUCTORS [J].
INUI, M ;
DONIACH, S ;
HIRSCHFELD, PJ ;
RUCKENSTEIN, AE .
PHYSICAL REVIEW B, 1988, 37 (04) :2320-2323
[17]   Random matrix model for chiral symmetry breaking [J].
Jackson, AD ;
Verbaarschot, JJM .
PHYSICAL REVIEW D, 1996, 53 (12) :7223-7230
[18]   Systematic low-energy effective theory for magnons and charge carriers in an antiferromagnet [J].
Kämpfer, F ;
Moser, M ;
Wiese, UJ .
NUCLEAR PHYSICS B, 2005, 729 (03) :317-360
[19]   Anomalous superconductivity and its competition with antiferromagnetism in doped Mott insulators [J].
Kancharla, S. S. ;
Kyung, B. ;
Senechal, D. ;
Civelli, M. ;
Capone, M. ;
Kotliar, G. ;
Tremblay, A. -M. S. .
PHYSICAL REVIEW B, 2008, 77 (18)
[20]   Diquark and pion condensation in random matrix models for two-color QCD [J].
Klein, B ;
Toublan, D ;
Verbaarschot, JJM .
PHYSICAL REVIEW D, 2005, 72 (01) :1-18