Application of the variable projection scheme for frequency-domain full-waveform inversion

被引:21
作者
Li, Maokun [1 ]
Rickett, James [2 ]
Abubakar, Aria [1 ]
机构
[1] Schlumberger Doll Res Ctr, Math & Modeling Dept, Cambridge, MA 02139 USA
[2] Schlumberger Gould Res, Cambridge, England
关键词
NONLINEAR LEAST-SQUARES;
D O I
10.1190/GEO2012-0351.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We found a data calibration scheme for frequency-domain full-waveform inversion (FWI). The scheme is based on the variable projection technique. With this scheme, the FWI algorithm can incorporate the data calibration procedure into the inversion process without introducing additional unknown parameters. The calibration variable for each frequency is computed using a minimum norm solution between the measured and simulated data. This process is directly included in the data misfit cost function. Therefore, the inversion algorithm becomes source independent. Moreover, because all the data points are considered in the calibration process, this scheme increases the robustness of the algorithm. Numerical tests determined that the FWI algorithm can reconstruct velocity distributions accurately without the source waveform information.
引用
收藏
页码:R249 / R257
页数:9
相关论文
共 24 条
[1]   2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements [J].
Abubakar, A. ;
Habashy, T. M. ;
Druskin, V. L. ;
Knizhnerman, L. ;
Alumbaugh, D. .
GEOPHYSICS, 2008, 73 (04) :F165-F177
[2]   Inversion algorithms for large-scale geophysical electromagnetic measurements [J].
Abubakar, A. ;
Habashy, T. M. ;
Li, M. ;
Liu, J. .
INVERSE PROBLEMS, 2009, 25 (12)
[3]  
Abubakar A., 2018, 78 SOC EXPLOR GEOPHY, V1, P304, DOI [10.1190/1.3054810, DOI 10.1190/1.3054810]
[4]  
Alexander A., 2011, HOOKE PARALLEL 3D AC
[5]  
Aravkin A., 2012, 74 ANN INT C EXH EAG, VP018
[6]  
Fichtner A, 2011, ADV GEOPHYS ENV MECH, P1, DOI 10.1007/978-3-642-15807-0_1
[7]   FORMATION VELOCITY AND DENSITY - DIAGNOSTIC BASICS FOR STRATIGRAPHIC TRAPS [J].
GARDNER, GHF ;
GARDNER, LW ;
GREGORY, AR .
GEOPHYSICS, 1974, 39 (06) :770-780
[8]   Separable nonlinear least squares: the variable projection method and its applications [J].
Golub, G ;
Pereyra, V .
INVERSE PROBLEMS, 2003, 19 (02) :R1-R26
[9]   DIFFERENTIATION OF PSEUDO-INVERSES AND NONLINEAR LEAST-SQUARES PROBLEMS WHOSE VARIABLES SEPARATE [J].
GOLUB, GH ;
PEREYRA, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :413-432
[10]   Preconditioned non-linear conjugate gradient method for frequency domain full-waveform seismic inversion [J].
Hu, W. ;
Abubakar, A. ;
Habashy, T. M. ;
Liu, J. .
GEOPHYSICAL PROSPECTING, 2011, 59 (03) :477-491