Platform for Automated Real-Time High Performance Analytics on Medical Image Data

被引:2
作者
Allen, William J. [1 ]
Gabr, Refaat E. [2 ]
Tefera, Getaneh B. [2 ]
Pednekar, Amol S. [3 ]
Vaughn, Matthew W. [1 ]
Narayana, Ponnada A. [2 ]
机构
[1] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA
[2] Univ Texas Houston, Hlth Sci Ctr, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA
[3] Texas Childrens Hosp, Dept Pediat Radiol, Houston, TX 77030 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Biomedical informatics; cyberinfrastructure; high performance computing; magnetic resonance imaging; real-time systems; BIG DATA; BRAIN; CARE; REGISTRATION; CHALLENGES; PROMISE;
D O I
10.1109/JBHI.2017.2771299
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.
引用
收藏
页码:318 / 324
页数:7
相关论文
共 26 条
[1]  
Allen W. J., 2017, P IEEE EMBS INT C BI
[2]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[3]  
Avants BB., 2009, Insight J., V2, P1, DOI 10.54294/uvnhin
[4]   An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Wu, Jue ;
Cook, Philip A. ;
Gee, James C. .
NEUROINFORMATICS, 2011, 9 (04) :381-400
[5]   Envisioning the future of 'big data' biomedicine [J].
Bui, Alex A. T. ;
Van Horn, John Darrell .
JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 69 :115-117
[6]  
COLLIGNON A, 1995, COMP IMAG VIS, V3, P263
[7]  
Dhawan AP., 2011, MED IMAGE ANAL, Vvol. 31
[8]   Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data [J].
Dinov, Ivo D. .
GIGASCIENCE, 2016, 5
[9]  
Dooley R., 2015, CONCURRENCY COMPUT E, V27, P258
[10]  
Dooley R., 2012, P 5 IEEE WORKSH MAN