Approximation algorithms from inexact solutions to semidefinite programming relaxations of combinatorial optimization problems

被引:2
作者
Lee, Timothy [1 ]
Mitchell, John E. [2 ]
机构
[1] WPA Res, Washington, DC 20003 USA
[2] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
Semidefinite programming; Approximation algorithms; MAxCuT; MAx2SAT; MAx3SAT; SPECTRAL BUNDLE METHOD; CUTTING PLANE METHODS; QUADRATIC PROGRAMS; CUT; COMPLEXITY; MATRIX;
D O I
10.1016/j.disopt.2016.04.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Semidefinite relaxations of certain combinatorial optimization problems lead to approximation algorithms with performance guarantees. For large-scale problems, it may not be computationally feasible to solve the semidefinite relaxations to optimality. In this paper, we investigate the effect on the performance guarantees of an approximate solution to the semidefinite relaxation for MAxCuT, MAx2SAT, and MAx3SAT. We show that it is possible to make simple modifications to the approximate solutions and obtain performance guarantees that depend linearly on the most negative eigenvalue of the approximate solution, the size of the problem, and the duality gap. In every case, we recover the original performance guarantees in the limit as the solution approaches the optimal solution to the semidefinite relaxation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:152 / 169
页数:18
相关论文
共 34 条
[1]  
Bai L., 2015, MATH PROGRAMM
[2]   Free bits, PCPs, and nonapproximability - Towards tight results [J].
Bellare, M ;
Goldreich, O ;
Sudan, M .
SIAM JOURNAL ON COMPUTING, 1998, 27 (03) :804-915
[3]   A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization [J].
Burer, S ;
Monteiro, RDC .
MATHEMATICAL PROGRAMMING, 2003, 95 (02) :329-357
[5]  
Devolder O., 2010, RECENT ADV OPTIMIZAT, P31
[6]  
Feige U., 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems, P182, DOI 10.1109/ISTCS.1995.377033
[7]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
[8]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145
[9]   A spectral bundle method for semidefinite programming [J].
Helmberg, C ;
Rendl, F .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :673-696
[10]   The spectral bundle method with second-order information [J].
Helmberg, C. ;
Overton, M. L. ;
Rendl, F. .
OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04) :855-876