Sequential disruption of the shortest path in critical percolation

被引:2
作者
Gschwend, Oliver [1 ]
Herrmann, Hans J. [2 ,3 ]
机构
[1] Swiss Fed Inst Technol, Computat Phys Engn Mat, Inst Bldg Mat, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] Univ Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
[3] ESPCI, CNRS UMR 7636, Lab PMMH, F-75005 Paris, France
关键词
INVASION PERCOLATION; FRACTAL DIMENSION; STRONG DISORDER; CLUSTERS;
D O I
10.1103/PhysRevE.100.032121
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the effect of sequentially disrupting the shortest path of percolation clusters at criticality by comparing it with the shortest alternative path. We measure the difference in length and the enclosed area between the two paths. The sequential approach allows us to study spatial correlations. We find the lengths of the segments of successively constant differences in length to be uncorrelated. Simultaneously, we study the distance between red bonds. We find the probability distributions for the enclosed areas A, the differences in length Delta l, and the lengths between the red bonds l(r) to follow power-law distributions. Using maximum likelihood estimation and extrapolation we find the exponents beta = 1.38 +/- 0.03 for Delta l, alpha = 1.186 +/- 0.008 for A, and delta = 1.64 +/- 0.03 for the distribution of l(r).
引用
收藏
页数:4
相关论文
共 26 条
[1]   powerlaw: A Python']Python Package for Analysis of Heavy-Tailed Distributions [J].
Alstott, Jeff ;
Bullmore, Edward T. ;
Plenz, Dietmar .
PLOS ONE, 2014, 9 (01)
[2]  
[Anonymous], 2014, Introduction to percolation theory: revised
[3]   The number of incipient spanning clusters in two-dimensional percolation [J].
Cardy, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05) :L105-L110
[4]   Transient and steady drift currents in waves damped by surfactants [J].
Christensen, KH .
PHYSICS OF FLUIDS, 2005, 17 (04) :042102-1
[5]   OPTIMAL PATHS AND DOMAIN-WALLS IN THE STRONG DISORDER LIMIT [J].
CIEPLAK, M ;
MARITAN, A ;
BANAVAR, JR .
PHYSICAL REVIEW LETTERS, 1994, 72 (15) :2320-2324
[6]   Invasion percolation and Eden growth: Geometry and universality [J].
Cieplak, M ;
Maritan, A ;
Banavar, JR .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3754-3757
[7]   CLUSTER STRUCTURE NEAR THE PERCOLATION-THRESHOLD [J].
CONIGLIO, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12) :3829-3844
[8]   Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions [J].
Deluca, Anna ;
Corral, Alvaro .
ACTA GEOPHYSICA, 2013, 61 (06) :1351-1394
[9]   Impact of Perturbations on Watersheds [J].
Fehr, E. ;
Kadau, D. ;
Andrade, J. S., Jr. ;
Herrmann, H. J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (04)
[10]   ON THE SPREADING OF TWO-DIMENSIONAL PERCOLATION [J].
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (04) :L215-L219