Catalytic enrichment of plasma with hydroxyl radicals in the aqueous phase at room temperature

被引:8
作者
Audemar, Maite [1 ]
Vallcorba, Oriol [2 ]
Peral, Inma [3 ]
Thomann, Jean-Sebastien [4 ]
Przekora, Agata [5 ]
Pawlat, Joanna [6 ]
Canal, Cristina [7 ,8 ,9 ]
Ginalska, Grazyna [5 ]
Kwiatkowski, Michal [6 ]
Duday, David [4 ]
Hermans, Sophie [1 ]
机构
[1] Catholic Univ Louvain, IMCN Inst, Pl Louis Pasteur 1, B-1348 Louvain La Neuve, Belgium
[2] ALBA Synchrotron Light Source, Carrer Llum 2-26, Barcelona 08290, Spain
[3] Univ Luxembourg, Phys & Mat Sci Res Unit, Maison Savoir, Ave Univ 2, L-4365 Esch Sur Alzette, Luxembourg
[4] Luxembourg Inst Sci & Technol LIST, Mat Res & Technol MRT Dept, 41 Rue Brill, L-4422 Belvaux, Luxembourg
[5] Med Univ Lublin, Chair & Dept Biochem & Biotechnol, Chodzki 1 St, PL-20093 Lublin, Poland
[6] Lublin Univ Technol, Chair Elect Engn & Electrotechnol, Nadbystrzycka 38a, PL-20618 Lublin, Poland
[7] Univ Polit Cnica Catalunya UPC, Dept Mat Sci & Engn, Biomat Biomech & Tissue Engn Grp, Av Eduard Maristany 14, Barcelona 08930, Spain
[8] UPC, Barcelona Res Ctr Multiscale Sci & Engn, Barcelona, Spain
[9] UPC, Res Ctr Biomed Engn CREB, Barcelona, Spain
关键词
ELECTRON-PROBE MICROANALYSIS; FE3O4 MAGNETIC NANOPARTICLES; FENTON-LIKE REACTIONS; ORGANIC POLLUTANTS; NONTHERMAL PLASMA; IRON-OXIDE; WATER; DEGRADATION; MECHANISM; REMOVAL;
D O I
10.1039/d0cy01557a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different iron oxide catalysts supported on mesoporous silica were prepared by several techniques including assembly of pre-synthesized nanoparticles, coprecipitation in the presence of the support or impregnation. Characterization showed that iron oxide nanoparticles were dispersed either at the surface of the SiO2 material or within the pores when prepared by dry impregnation. The catalytic performance of these materials for Fenton chemistry was evaluated through kinetic tests in the presence of coumarin as a radical trap for the quantification of the HO radicals produced. The first tests concerned the production of HO radicals from H2O2 by a Fenton-like reaction. The results show that catalysts prepared by dry impregnation in an ethanolic solution show the highest activity toward the production of HO radicals. These catalysts were also engaged in a reaction without external H2O2 using a cold atmospheric pressure plasma jet treatment with the successful purpose of increasing the production of HO radicals in aqueous solution at room temperature and near-neutral pH. Our best catalysts outperformed others reported in the literature in reactions carried out with soluble species or at acidic pH. Moreover, a synergetic effect between the heterogeneous catalyst and the plasma for HO radical production was highlighted. These radicals could be easily used for biomedical or wastewater treatment applications.
引用
收藏
页码:1430 / 1442
页数:13
相关论文
共 70 条
[1]   Wastewater chemical contaminants: remediation by advanced oxidation processes [J].
Bartolomeu, M. ;
Neves, M. G. P. M. S. ;
Faustino, M. A. F. ;
Almeida, A. .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2018, 17 (11) :1573-1598
[2]  
Bastin GF, 1998, X-RAY SPECTROM, V27, P3
[3]   A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment [J].
Bello, Mustapha Mohammed ;
Raman, Abdul Aziz Abdul ;
Asghar, Anam .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2019, 126 :119-140
[4]   Quantitative analysis of thin specimens in the TEM using a φ(ρz)-model [J].
Boon, G ;
Bastin, G .
MICROCHIMICA ACTA, 2004, 147 (03) :125-133
[5]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[6]   Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer [J].
Cao, Yang ;
Qu, Guangzhou ;
Li, Tengfei ;
Jiang, Nan ;
Wang, Tiecheng .
PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (10)
[7]   Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium [J].
Chandana, L. ;
Reddy, P. Manoj Kumar ;
Subrahmanyam, Ch. .
CHEMICAL ENGINEERING JOURNAL, 2015, 282 :116-122
[8]   Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2 [J].
Chen, Fengxi ;
Xie, Shenglong ;
Huang, Xuanlin ;
Qiu, Xinhong .
JOURNAL OF HAZARDOUS MATERIALS, 2017, 322 :152-162
[9]   Thermal properties of nanocrystalline goethite, magnetite, and maghemite [J].
Chen, Y. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 553 :194-198
[10]   Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2 nanoparticles [J].
Czili, Hajnalka ;
Horvath, Attila .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 81 (3-4) :295-302