Regularity results for the minimum time function of a class of semilinear evolution equations of parabolic type

被引:6
作者
Albano, P [1 ]
Cannarsa, P [1 ]
Sinestrari, C [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
time optimal control; semilinear parabolic problem; semiconcavity; optimality conditions;
D O I
10.1137/S0363012998335176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Under suitable controllability and smoothness assumptions, the minimum time function T(x) of a semilinear control system is proved to be locally Lipschitz continuous and semiconcave on the controllable set. These properties are then applied to derive optimality conditions relating optimal trajectories to the superdifferential of T.
引用
收藏
页码:916 / 946
页数:31
相关论文
共 28 条
  • [1] ALBANO P, 1999, SYS CON FDN, P171
  • [2] ON THE SINGULARITIES OF CONVEX-FUNCTIONS
    ALBERTI, G
    AMBROSIO, L
    CANNARSA, P
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 76 (3-4) : 421 - 435
  • [3] Ambrosetti A, 1993, PRIMER NONLINEAR ANA
  • [4] Balakrishnan A. V., 1965, SIAM J CONTROL, V3, P152, DOI 10.1137/0303014
  • [5] THE DYNAMIC-PROGRAMMING EQUATION FOR THE TIME-OPTIMAL CONTROL PROBLEM IN INFINITE DIMENSIONS
    BARBU, V
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) : 445 - 456
  • [6] Barbu V., 1993, ANAL CONTROL NONLINE
  • [7] CANNARSA P, 1992, LECT NOTES CONTR INF, V178, P60
  • [8] CONVEXITY PROPERTIES OF THE MINIMUM-TIME FUNCTION
    CANNARSA, P
    SINESTRARI, C
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (03): : 273 - 298
  • [9] Cannarsa P, 1994, INT S NUM M, V118, P79
  • [10] CANNARSA P, 1998, J MATH SYSTEMS ESTIM, V8, P123