Computing multiple pitchfork bifurcation points

被引:2
|
作者
Ponisch, G
Schnabel, U
Schwetlick, H
机构
[1] Inst. für Numerische Mathematik, Technische Universität Dresden
关键词
parameterized nonlinear equations; singular points; pitchfork bifurcation points; minimally extended systems; Newton's method;
D O I
10.1007/BF02684441
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A point (x*, lambda*) is called a pitchfork bifurcation point of multiplicity p greater than or equal to 1 of the nonlinear system F(x, lambda) = 0, F:R-n x R-n --> R-n, if rank delta(x)F(x*, lambda*)= n - 1, and if the Ljapunov-Schmidt reduced equation has the normally form g(xi, mu) = +/- xi(2+p) +/- mu xi = 0. It is shown that such points satisfy a minimally extended system G(y) = 0, G:Rn+2 --> Rn+2 the dimension n + 2 of which is independent of p. For solving this system, a two-stage Newton-type method is proposed. Some numerical tests show the influence of the starting point and of the bordering vectors used in the definition of the extended system on the behavior of the iteration.
引用
收藏
页码:209 / 222
页数:14
相关论文
共 50 条
  • [1] Computing multiple pitchfork bifurcation points
    G. Pönisch
    Uwe Schnabel
    Hubert Schwetlick
    Computing, 1997, 59 : 209 - 222
  • [2] Computing multiple pitchfork bifurcation points
    Poenisch, G.
    Schnabel, U.
    Schwetlick, H.
    Computing (Vienna/New York), 1997, 59 (03): : 209 - 222
  • [3] Computation of multiple pitchfork bifurcation points
    Ponisch, G
    Schnabel, U
    Schwetlick, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S449 - S452
  • [4] The Pitchfork Bifurcation
    Rajapakse, Indika
    Smale, Steve
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [5] A NOTE ON COMPUTING SIMPLE BIFURCATION POINTS
    JANOVSKY, V
    COMPUTING, 1989, 43 (01) : 27 - 36
  • [6] BQL Generalized Inverse Condition for Multiple Transcritical and Pitchfork Bifurcation Theorem
    Liu, Guanqi
    Wang, Yuwen
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (14) : 1786 - 1793
  • [7] A pitchfork bifurcation in the tatonnement process
    Bala, V
    ECONOMIC THEORY, 1997, 10 (03) : 521 - 530
  • [8] A pitchfork bifurcation in the tatonnement process★
    Venkatesh Bala
    Economic Theory, 1997, 10 : 521 - 530
  • [9] Bifurcation of Nongeneric Homoclinic Orbit Accompanied by Pitchfork Bifurcation
    Geng, Fengjie
    Li, Song
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] The influence of a pitchfork bifurcation of the critical points of a symmetric caldera potential energy surface on dynamical matching
    Geng, Y.
    Katsanikas, M.
    Agaoglou, M.
    Wiggins, S.
    CHEMICAL PHYSICS LETTERS, 2021, 768 (768)