Compressible Fluids Driven by Stochastic Forcing: The Relative Energy Inequality and Applications

被引:22
作者
Breit, Dominic [1 ]
Feireisl, Eduard [2 ]
Hofmanova, Martina [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Acad Sci Czech Republ, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
欧洲研究理事会;
关键词
NAVIER-STOKES EQUATIONS; GLOBAL EXISTENCE; EULER EQUATIONS; VISCOUS FLUIDS; WEAK SOLUTIONS; NOISE; LAW;
D O I
10.1007/s00220-017-2833-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show the relative energy inequality for the compressible Navier-Stokes system driven by a stochastic forcing. As a corollary, we prove the weak-strong uniqueness property (pathwise and in law) and convergence of weak solutions in the inviscid-incompressible limit. In particular, we establish a Yamada-Watanabe type result in the context of the compressible Navier-Stokes system, that is, pathwise weak-strong uniqueness implies weak-strong uniqueness in law.
引用
收藏
页码:443 / 473
页数:31
相关论文
共 26 条