Penetration of an artificial arterial thromboembolism in a live animal using an intravascular therapeutic microrobot system

被引:35
作者
Jeong, Semi [1 ]
Choi, Hyunchul [2 ]
Go, Gwangjun [2 ]
Lee, Cheong [2 ]
Lim, Kyung Seob [3 ]
Sim, Doo Sun [3 ]
Jeong, Myung Ho [3 ]
Ko, Seong Young [2 ]
Park, Jong-Oh [2 ]
Park, Sukho [2 ]
机构
[1] Daegu Gyeongbuk Med Innovat Fdn, Med Device Dev Ctr, Daegu 41061, South Korea
[2] Chonnam Natl Univ, Sch Mech Engn, Gwangju 61186, South Korea
[3] Chonnam Natl Univ Hosp, Gwangju 61469, South Korea
关键词
Microrobot; Electromagnetic; Drilling; Helmholtz coil; Saddle coil; GRADIENT;
D O I
10.1016/j.medengphy.2016.01.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The biomedical applications of wireless robots are an active area of study. In addition to moving to a target lesion, wireless locomotive robots can deliver a therapeutic drug for a specific disease. Thus, they hold great potential as therapeutic devices in blood vessel diseases, such as thrombi and occlusions, and in other diseases, such as cancer and inflammation. During a percutaneous coronary intervention (PCI), surgeons wear a heavy shielding cloth. However, they cannot escape severe radiation exposure owing to unstable shielding. They may also suffer from joint pains because of the weight of the shielding cloth. In addition, the catheters in PCIs are controlled by the surgeon's hand. Thus, they lack steering ability. A new intravascular therapeutic system is needed to address these problems in conventional PCIs. We developed an intravascular therapeutic microrobot system (ITMS) using an electromagnetic actuation (EMA) system with bi-plane X-ray devices that can remotely control a robot in blood vessels. Using this proposed ITMS, we demonstrated the locomotion of the robot in abdominal and iliac arteries of a live pig by the master slave method. After producing an arterial thromboembolism in a live pig in a partial iliac artery, the robot moved to the target lesion and penetrated by specific motions (twisting and hammering) of the robot using the proposed ITMS. The results reveal that the proposed ITMS can realize stable locomotion (alignment and propulsion) of a robot in abdominal and iliac arteries of a live pig. This can be considered the first preclinical trial of the treatment of an artificial arterial thromboembolism by penetration of a blood clot. (C) 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:403 / 410
页数:8
相关论文
共 17 条
[1]   Robotics in the small - Part I: microrobotics [J].
Abbott, Jake J. ;
Nagy, Zoltan ;
Beyeler, Felix ;
Nelson, Bradley J. .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2007, 14 (02) :92-103
[2]   EMA system with gradient and uniform saddle coils for 3D locomotion of microrobot [J].
Choi, Hyunchul ;
Cha, Kyoungrae ;
Choi, Jongho ;
Jeong, Semi ;
Jeon, Seungmun ;
Jang, Gunhee ;
Park, Jong-oh ;
Park, Sukho .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 163 (01) :410-417
[3]  
Choi J, 2010, P IEEE RAS-EMBS INT, P588, DOI 10.1109/BIOROB.2010.5628036
[4]  
Coronel R, 1997, CIRCULATION, V96, P3985
[5]   Magnetic Navigation System With Gradient and Uniform Saddle Coils for the Wireless Manipulation of Micro-Robots in Human Blood Vessels [J].
Jeon, Seungmun ;
Jang, Gunhee ;
Choi, Hyunchul ;
Park, Sukho .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (06) :1943-1946
[6]  
Jeong S, 2013, INT C CONTR AUT SYST, P1554
[7]   Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field [J].
Jeong, Semi ;
Choi, Hyunchul ;
Cha, Kyoungrae ;
Li, Jie ;
Park, Jong-oh ;
Park, Sukho .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 171 (02) :429-435
[8]   MRI driven magnetic microswimmers [J].
Kosa, Gabor ;
Jakab, Peter ;
Szekely, Gabor ;
Hata, Nobuhiko .
BIOMEDICAL MICRODEVICES, 2012, 14 (01) :165-178
[9]   OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation [J].
Kummer, Michael P. ;
Abbott, Jake J. ;
Kratochvil, Bradley E. ;
Borer, Ruedi ;
Sengul, Ali ;
Nelson, Bradley J. .
IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (06) :1006-1017
[10]   A hydrogel-based intravascular microgripper manipulated using magnetic fields [J].
Kuo, Jui-Chang ;
Huang, Hen-Wei ;
Tung, Shu-Wei ;
Yang, Yao-Joe .
SENSORS AND ACTUATORS A-PHYSICAL, 2014, 211 :121-130