Duality principles in frame theory

被引:69
作者
Casazza, PG [1 ]
Kutyniok, G
Lammers, MC
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Giessen, Lehrstuhl Numer Math, D-35392 Giessen, Germany
[3] Univ N Carolina, Dept Math, Wilmington, NC 28403 USA
关键词
Abstract frame theory; Duality principle; Frame; Gabor system; Riesz basis; Ron-Shen duality principle; Schauder basis; Wexler-Raz biorthogonality relations;
D O I
10.1007/s00041-004-3024-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Duality principles in Gabor theory such as the Ron-Shen duality principle and the Wexler-Raz biorthogonality relations play a fundamental role for analyzing Gabor systems. In this article we present a general approach to derive duality principles in abstract frame theory. For each sequence in a separable Hilbert space we define a corresponding sequence dependent only on two orthonormal bases. Then we characterize exactly properties of the first sequence in terms of the associated one, which yields duality relations for the abstract frame setting. In the last part we apply our results to Gabor systems.
引用
收藏
页码:383 / 408
页数:26
相关论文
共 17 条
[1]  
BALAN R, NOTE EQUIVALENCE WEY
[2]   Equal-norm tight frames with erasures [J].
Casazza, PG ;
Kovacevic, J .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :387-430
[3]   Modern tools for Weyl-Heisenberg (Gabor) frame theory [J].
Casazza, PG .
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 115, 2001, 115 :1-127
[4]   The art of frame theory [J].
Casazza, PG .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02) :129-201
[5]  
Christensen O., 2003, An Introduction to Frames and Riesz Bases, DOI DOI 10.1007/978-0-8176-8224-8
[6]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[7]  
Daubechies I., 1995, J FOURIER ANAL APPL, V1, P437, DOI [DOI 10.1007/S00041-001-4018-3, 10.1007/s00041-001-4018-30, 10.1007/s00041-001-4018-3]
[8]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[9]  
Gabor D., 1946, J I ELEC ENGRS PART, V93, P429, DOI [10.1049/JI-3-2.1946.0074, DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074]
[10]   Quantized frame expansions with erasures [J].
Goyal, VK ;
Kovacevic, J ;
Kelner, JA .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (03) :203-233