Brownian motion with killing and reflection and the ''hot-spots'' problem

被引:11
作者
Bañuelos, R [1 ]
Pang, M
Pascu, M
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00440-003-0323-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the ''hot-spots'' property for the survival time probability of Brownian motion with killing and reflection in planar convex domains whose boundary consists of two curves, one of which is an arc of a circle, intersecting at acute angles. This leads to the ''hot-spots'' property for the mixed Dirichlet-Neumann eigenvalue problem in the domain with Neumann conditions on one of the curves and Dirichlet conditions on the other.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 14 条
[1]  
ATAR R, 2001, ELECT J PROBAB, V18, P1
[2]  
ATAR R, NODAL LINES NEUMANN
[3]  
ATAR R, NEUMANN EIGENFUNCTIO
[4]   On the "hot spots" conjecture of J.!Rauch [J].
Bañuelos, R ;
Burdzy, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 164 (01) :1-33
[5]   Lower bound gradient estimates for solutions of Schrodinger equations and heat kernels [J].
Bañuelos, R ;
Pang, MMH .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (3-4) :499-543
[6]  
BANUELOS R, IN PRESS INDIANA MAT
[7]  
Bass RF, 2000, DUKE MATH J, V105, P25
[8]   A counterexample to the "hot spots" conjecture [J].
Burdzy, K ;
Werner, W .
ANNALS OF MATHEMATICS, 1999, 149 (01) :309-317
[9]  
Duren P. L., 1983, Univalent functions
[10]  
Freitas P, 2002, INDIANA U MATH J, V51, P305