Modeling Optimal Control over a Nonlinear Object

被引:0
|
作者
Sharikov, Yu. V. [1 ]
Tkachev, I. V. [1 ]
Snegirev, N. V. [1 ]
机构
[1] St Petersburg Min Univ, St Petersburg 199106, Russia
关键词
mathematical model; optimal control; nonlinearity; chemical kinetics; catalytic reforming; PREDICTIVE CONTROL;
D O I
10.1134/S0040579520050425
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A system of improved control over the catalytic reforming process on the basis of a mathematical model of this process is considered. The objective of this work is to demonstrate the feasibility of an adaptive system of optimal control with a predicting model in the control loop. The reasonability of the considered control system is shown.
引用
收藏
页码:844 / 855
页数:12
相关论文
共 50 条
  • [31] MODELING AND OPTIMAL CONTROL OF AN OCTOPUS TENTACLE
    Cacace, Simone
    Lai, Anna Chiara
    Loreti, Paola
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (01) : 59 - 84
  • [32] Modeling and optimal control for plates with defects
    Marinova, Daniela
    Lukarski, Dimitar
    Stavroulakis, Georgios
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1343 - 1353
  • [33] Modeling and Optimal Control of Automated Trolleys
    Xu, Jian
    Chen, Qijun
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 710 - 713
  • [34] Nonlinear optimal control of cascaded irrigation canals with conservation law PDEs
    Zeng, Ningjun
    Cen, Lihui
    Xie, Yongfang
    Zhang, Shaohui
    CONTROL ENGINEERING PRACTICE, 2020, 100 (100)
  • [35] The Optimal Nonlinear PI Composed Control of Nonlinear Uncertain System
    Chen Xianli
    Liu Xintao
    MECHANICAL COMPONENTS AND CONTROL ENGINEERING III, 2014, 668-669 : 549 - 552
  • [36] Stability and optimal control for delayed rumor-spreading model with nonlinear incidence over heterogeneous networks
    Luo, Xupeng
    Jiang, Haijun
    Chen, Shanshan
    Li, Jiarong
    CHINESE PHYSICS B, 2023, 32 (05)
  • [37] Distributionally robust modeling of optimal control
    Shapiro, Alexander
    OPERATIONS RESEARCH LETTERS, 2022, 50 (05) : 561 - 567
  • [38] Optimal Control of Nonlinear Objects of Engineering Thermophysics
    Rapoport, E. Ya.
    Pleshivtseva, Yu. E.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2012, 48 (05) : 429 - 437
  • [39] Optimal control of a nonlinear elliptic population system
    Arino, O
    Montero-Sánchez, JA
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2000, 43 : 225 - 241
  • [40] Nonlinear robust and optimal control of robot manipulators
    Pan, Hejia
    Xin, Ming
    NONLINEAR DYNAMICS, 2014, 76 (01) : 237 - 254