Modeling Optimal Control over a Nonlinear Object

被引:0
|
作者
Sharikov, Yu. V. [1 ]
Tkachev, I. V. [1 ]
Snegirev, N. V. [1 ]
机构
[1] St Petersburg Min Univ, St Petersburg 199106, Russia
关键词
mathematical model; optimal control; nonlinearity; chemical kinetics; catalytic reforming; PREDICTIVE CONTROL;
D O I
10.1134/S0040579520050425
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A system of improved control over the catalytic reforming process on the basis of a mathematical model of this process is considered. The objective of this work is to demonstrate the feasibility of an adaptive system of optimal control with a predicting model in the control loop. The reasonability of the considered control system is shown.
引用
收藏
页码:844 / 855
页数:12
相关论文
共 50 条
  • [1] Modeling Optimal Control over a Nonlinear Object
    Yu. V. Sharikov
    I. V. Tkachev
    N. V. Snegirev
    Theoretical Foundations of Chemical Engineering, 2020, 54 : 844 - 855
  • [2] Object-oriented modeling and optimal control of a biological wastewater treatment process
    Chai, Qian
    Bakke, Rune
    Lie, Bernt
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON CONTROL AND APPLICATIONS, 2006, : 218 - +
  • [3] A novel nonlinear SAZIQHR epidemic transmission model: mathematical modeling, simulation, and optimal control
    Kumar, Abhishek
    Tanvi, Rajiv
    Aggarwal, Rajiv
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [4] Nonlinear state-space modeling and optimal tracking control for pumped storage units
    Yan, Shuangqing
    Yin, Xiuxing
    Zheng, Yang
    APPLIED ENERGY, 2024, 373
  • [5] Optimal Control for a Nonlinear Tuberculosis Model
    Sowndarrajan, P. T.
    Shangerganesh, L.
    Nyamoradi, N.
    Hariharan, S.
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (5-6) : 1695 - 1706
  • [6] A MODEL OF OPTIMAL CONTROL OVER A NONLINEAR MULTIDIMENSIONAL INNOVATION DIFFUSION PROCESS
    Akimenko, V. V.
    Sugonyak, I. I.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2008, 44 (04) : 564 - 574
  • [7] Mathematical modeling and optimal control of corruption dynamics
    Athithan, S.
    Ghosh, Mini
    Li, Xue-Zhi
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (06)
  • [8] Efficient Implementation of Rate Constraints for Nonlinear Optimal Control
    Nie, Yuanbo
    Kerrigan, Eric C.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (01) : 329 - 334
  • [9] Modeling and optimal control of a nonlinear dynamical system in microbial fed-batch fermentation
    Liu, Chongyang
    Gong, Zhaohua
    Feng, Enmin
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 168 - 178
  • [10] Bone metastasis treatment modeling via optimal control
    Camacho, Ariel
    Jerez, Silvia
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (1-2) : 497 - 526