Ultrasonic Bending of Silver Nanowires

被引:16
作者
Chen, Qiuxian [1 ,2 ]
Xin, Wenwen [1 ,2 ]
Ji, Qiaozhen [1 ,2 ]
Hu, Ting [1 ,2 ]
Zhang, Jun [3 ]
Shang, Cheng [4 ]
Liu, Zhipan [4 ]
Liu, Xueyang [1 ,2 ]
Chen, Hongyu [1 ,2 ]
机构
[1] Nanjing Tech Univ, Inst Adv Synth IAS, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Sch Chem & Mol Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat, Nanjing 211816, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Key Lab Unsteady Aerodynam & Flow Control, Minist Ind & Informat Technol, Nanjing 210016, Peoples R China
[4] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Dept Chem,Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
ultrasound; mechanical effect; silver nanowires; bending; cavitation;
D O I
10.1021/acsnano.0c05601
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study silver nanowires as a model for the mechanical effects of ultrasonication. Their bending is caused by the outward push of shock waves against the inertia and fluid resistance. The structural analyses of a large number of cases reveal the principles of the mechanical effects on the freely suspended colloidal nanostructures. In addition to providing knowledge of the sonication effects, we believe that understanding would help to exploit sonication for nanoscale mechanical manipulation.
引用
收藏
页码:15286 / 15292
页数:7
相关论文
共 24 条
  • [1] The characterization of acoustic cavitation bubbles - An overview
    Ashokkumar, Muthupandian
    [J]. ULTRASONICS SONOCHEMISTRY, 2011, 18 (04) : 864 - 872
  • [2] Applications of Ultrasound to the Synthesis of Nanostructured Materials
    Bang, Jin Ho
    Suslick, Kenneth S.
    [J]. ADVANCED MATERIALS, 2010, 22 (10) : 1039 - 1059
  • [3] Characterisation of the acoustic cavitation cloud by two laser techniques
    Burdin, F
    Tsochatzidis, NA
    Guiraud, P
    Wilhelm, AM
    Delmas, H
    [J]. ULTRASONICS SONOCHEMISTRY, 1999, 6 (1-2) : 43 - 51
  • [4] Canebal G.T., 2010, Journal of Minerals and Materials Characterization and Engineering, V9, P165, DOI DOI 10.4236/JMMCE.2010.93015
  • [5] The disappearance of ultrasound contrast bubbles: Observations of bubble dissolution and cavitation nucleation
    Chen, WS
    Matula, TJ
    Crum, LA
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2002, 28 (06) : 793 - 803
  • [6] DNA Double-Strand Breaks Induced by Cavitational Mechanical Effects of Ultrasound in Cancer Cell Lines
    Furusawa, Yukihiro
    Fujiwara, Yoshisada
    Campbell, Paul
    Zhao, Qing-Li
    Ogawa, Ryohei
    Hassan, Mariame Ali
    Tabuchi, Yoshiaki
    Takasaki, Ichiro
    Takahashi, Akihisa
    Kondo, Takashi
    [J]. PLOS ONE, 2012, 7 (01):
  • [7] Ultrasound focusing using magnetic resonance acoustic radiation force imaging: Application to ultrasound transcranial therapy
    Hertzberg, Y.
    Volovick, A.
    Zur, Y.
    Medan, Y.
    Vitek, S.
    Navon, G.
    [J]. MEDICAL PHYSICS, 2010, 37 (06) : 2934 - 2942
  • [8] Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings
    Jiang, LP
    Xu, S
    Zhu, JM
    Zhang, JR
    Zhu, JJ
    Chen, HY
    [J]. INORGANIC CHEMISTRY, 2004, 43 (19) : 5877 - 5883
  • [9] Double-Strand Breaks in Genome-Sized DNA Caused by Ultrasound
    Kubota, Rinko
    Yamashita, Yusuke
    Kenmotsu, Takahiro
    Yoshikawa, Yuko
    Yoshida, Kenji
    Watanabe, Yoshiaki
    Imanaka, Tadayuki
    Yoshikawa, Kenichi
    [J]. CHEMPHYSCHEM, 2017, 18 (08) : 959 - 964
  • [10] CAVITATION BUBBLE DYNAMICS STUDIED BY HIGH-SPEED PHOTOGRAPHY AND HOLOGRAPHY .1.
    LAUTERBORN, W
    HENTSCHEL, W
    [J]. ULTRASONICS, 1985, 23 (06) : 260 - 268