MICRA: Microstructural image compilation with repeated acquisitions

被引:21
作者
Koller, Kristin [1 ]
Rudrapatna, Umesh [1 ]
Chamberland, Maxime [1 ]
Raven, Erika P. [1 ]
Parker, Greg D. [1 ,3 ]
Tax, Chantal M. W. [1 ]
Drakesmith, Mark [1 ]
Fasano, Fabrizio [4 ]
Owen, David [1 ]
Hughes, Garin [1 ]
Charron, Cyril [1 ]
Evans, C. John [1 ]
Jones, Derek K. [1 ,2 ]
机构
[1] Cardiff Univ, Cardiff Univ Brain Res Imaging Ctr CUBRIC, Sch Psychol, Cardiff CF24 4HQ, Wales
[2] Australian Catholic Univ, Mary MacKillop Inst Hlth Res, Melbourne, Vic, Australia
[3] Cardiff Univ, Expt MRI Ctr EMRIC, Sch Biosci, Cardiff, Wales
[4] Siemens Healthcare GmbH, Erlangen, Germany
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
DIFFUSION MRI; HUMAN BRAIN; ROBUST; REPRODUCIBILITY; OPTIMIZATION; REGISTRATION; PARAMETERS; T-1;
D O I
10.1016/j.neuroimage.2020.117406
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We provide a rich multi-contrast microstructural MRI dataset acquired on an ultra-strong gradient 3T Connectom MRI scanner comprising 5 repeated sets of MRI microstructural contrasts in 6 healthy human participants. The availability of data sets that support comprehensive simultaneous assessment of test-retest reliability of multiple microstructural contrasts (i.e., those derived from advanced diffusion, multi-component relaxometry and quantitative magnetisation transfer MRI) in the same population is extremely limited. This unique dataset is offered to the imaging community as a test-bed resource for conducting specialised analyses that may assist and inform their current and future research. The Microstructural Image Compilation with Repeated Acquisitions (MICRA) dataset includes raw data and computed microstructure maps derived from multi-shell and multi-direction encoded diffusion, multi-component relaxometry and quantitative magnetisation transfer acquisition protocols. Our data demonstrate high reproducibility of several microstructural MRI measures across scan sessions as shown by intra-class correlation coefficients and coefficients of variation. To illustrate a potential use of the MICRA dataset, we computed sample sizes required to provide sufficient statistical power a priori across different white matter pathways and microstructure measures for different statistical comparisons. We also demonstrate whole brain white matter voxel-wise repeatability in several microstructural maps. The MICRA dataset will be of benefit to researchers wishing to conduct similar reliability tests, power estimations or to evaluate the robustness of their own analysis pipelines.
引用
收藏
页数:14
相关论文
共 57 条
[1]  
Allen C, 2019, PLOS BIOL, V17, DOI [10.1371/journal.pbio.3000246, 10.1186/s13048-023-01233-y]
[2]  
Andersson J., 2007, SD
[3]   An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging [J].
Andersson, Jesper L. R. ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2016, 125 :1063-1078
[4]   How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging [J].
Andersson, JLR ;
Skare, S ;
Ashburner, J .
NEUROIMAGE, 2003, 20 (02) :870-888
[5]   New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter [J].
Assaf, Y ;
Freidlin, RZ ;
Rohde, GK ;
Basser, PJ .
MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) :965-978
[6]  
Bells S., 2011, P INT SOC MAGN RESON, V19, P678
[7]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[8]   Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping [J].
Calamante, Fernando ;
Tournier, Jacques-Donald ;
Jackson, Graeme D. ;
Connelly, Alan .
NEUROIMAGE, 2010, 53 (04) :1233-1243
[9]   Optimal acquisition schemes for in vivo quantitative magnetization transfer MRI [J].
Cercignani, Mara ;
Alexander, Daniel C. .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (04) :803-810
[10]   Obtaining Representative Core Streamlines for White Matter Tractometry of the Human Brain [J].
Chamberland, Maxime ;
St-Jean, Samuel ;
Tax, Chantal M. W. ;
Jones, Derek K. .
COMPUTATIONAL DIFFUSION MRI (CDMRI 2018), 2019, :359-366