Chemical tools to explore nutrient-driven O-GlcNAc cycling

被引:14
作者
Kim, Eun J. [1 ]
Bond, Michelle R. [2 ]
Love, Dona C. [2 ]
Hanover, John A. [2 ]
机构
[1] Daegu Univ, Dept Sci Educ Chem Major, Deagu, South Korea
[2] NIDDK, Lab Cell Biochem & Biol, NIH, Bethesda, MD 20892 USA
基金
新加坡国家研究基金会;
关键词
O-GlcNAc; O-GlcNAc transferase; OGT's activity assays; OGT's catalytic mechanism; OGT's inhibitors; LINKED-N-ACETYLGLUCOSAMINE; HEXOSAMINE BIOSYNTHESIS; INSULIN-RESISTANCE; TRANSFERASE OGT; NUCLEOCYTOPLASMIC PROTEINS; CRYSTALLOGRAPHIC ANALYSIS; TETRATRICOPEPTIDE REPEAT; CYTOPLASMIC PROTEINS; SIGNAL-TRANSDUCTION; REACTION COORDINATE;
D O I
10.3109/10409238.2014.931338
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Posttranslational modifications (PTM) including glycosylation, phosphorylation, acetylation, methylation and ubiquitination dynamically alter the proteome. The evolutionarily conserved enzymes O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase are responsible for the addition and removal, respectively, of the nutrient-sensitive PTM of protein serine and threonine residues with O-GlcNAc. Indeed, the O-GlcNAc modification acts at every step in the "central dogma'' of molecular biology and alters signaling pathways leading to amplified or blunted biological responses. The cellular roles of OGT and the dynamic PTM O-GlcNAc have been clarified with recently developed chemical tools including high-throughput assays, structural and mechanistic studies and potent enzyme inhibitors. These evolving chemical tools complement genetic and biochemical approaches for exposing the underlying biological information conferred by O-GlcNAc cycling.
引用
收藏
页码:327 / 342
页数:16
相关论文
共 138 条
  • [1] Chemical Approaches To Perturb, Profile, and Perceive Glycans
    Agard, Nicholas J.
    Bertozzi, Carolyn R.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) : 788 - 797
  • [2] Ataxin-10 interacts with O-GlcNAc transferase OGT in pancreatic β cells
    Andrali, SS
    März, P
    Özcan, S
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 337 (01) : 149 - 153
  • [3] Identification, molecular cloning, and characterization of a novel GABAA receptor-associated protein, GRIF-1
    Beck, M
    Brickley, K
    Wilkinson, HL
    Sharma, S
    Smith, M
    Chazot, PL
    Pollard, S
    Stephenson, FA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (33) : 30079 - 30090
  • [4] Blatch GL, 1999, BIOESSAYS, V21, P932, DOI 10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO
  • [5] 2-N
  • [6] Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence
    Blom, N
    Sicheritz-Pontén, T
    Gupta, R
    Gammeltoft, S
    Brunak, S
    [J]. PROTEOMICS, 2004, 4 (06) : 1633 - 1649
  • [7] Bisubstrate UDP-peptide conjugates as human transferase inhibitors
    Borodkin, Vladimir S.
    Schimpl, Marianne
    Gundogdu, Mehmet
    Rafie, Karim
    Dorfmueller, Helge C.
    Robinson, David A.
    van Aalten, Daan M. F.
    [J]. BIOCHEMICAL JOURNAL, 2014, 457 : 497 - 502
  • [8] Characterization of β-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis
    Butkinaree, Chutikarn
    Cheung, Win D.
    Park, Sungjin
    Park, Kyoungsook
    Barber, Megan
    Hart, Gerald W.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (35) : 23557 - 23566
  • [9] Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1
    Caldwell, S. A.
    Jackson, S. R.
    Shahriari, K. S.
    Lynch, T. P.
    Sethi, G.
    Walker, S.
    Vosseller, K.
    Reginato, M. J.
    [J]. ONCOGENE, 2010, 29 (19) : 2831 - 2842
  • [10] The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics
    Cantarel, Brandi L.
    Coutinho, Pedro M.
    Rancurel, Corinne
    Bernard, Thomas
    Lombard, Vincent
    Henrissat, Bernard
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D233 - D238