Size effects in finite systems with long-range interactions
被引:3
|
作者:
Loscar, E. S.
论文数: 0引用数: 0
h-index: 0
机构:
UNLP, Inst Fis Liquidos & Sistemas Biol IFLYSIB, CCT La Plata CONICET, Calle 59 789, La Plata, Buenos Aires, Argentina
Univ Nacl La Plata, Dept Fis, Cc 67, RA-1900 La Plata, Buenos Aires, ArgentinaUNLP, Inst Fis Liquidos & Sistemas Biol IFLYSIB, CCT La Plata CONICET, Calle 59 789, La Plata, Buenos Aires, Argentina
Loscar, E. S.
[1
,2
]
Horowitz, C. M.
论文数: 0引用数: 0
h-index: 0
机构:
UNLP, CCT La Plata CONICET, Inst Invest Fisicoquim Teor & Aplicadas INIFTA, Sucursal 4,Casilla Correo 16, RA-1900 La Plata, Buenos Aires, ArgentinaUNLP, Inst Fis Liquidos & Sistemas Biol IFLYSIB, CCT La Plata CONICET, Calle 59 789, La Plata, Buenos Aires, Argentina
Horowitz, C. M.
[3
]
机构:
[1] UNLP, Inst Fis Liquidos & Sistemas Biol IFLYSIB, CCT La Plata CONICET, Calle 59 789, La Plata, Buenos Aires, Argentina
[2] Univ Nacl La Plata, Dept Fis, Cc 67, RA-1900 La Plata, Buenos Aires, Argentina
[3] UNLP, CCT La Plata CONICET, Inst Invest Fisicoquim Teor & Aplicadas INIFTA, Sucursal 4,Casilla Correo 16, RA-1900 La Plata, Buenos Aires, Argentina
Small systems consisting of particles interacting with long-range potentials exhibit enormous size effects. The Tsallis conjecture [Tsallis, Fractals 3, 541 (1995)], valid for translationally invariant systems with long-range interactions, states a well-known scaling relating different sizes. Here we propose to generalize this conjecture to systems with this symmetry broken, by adjusting one parameter that determines an effective distance to compute the strength of the interaction. We apply this proposal to the one-dimensional Ising model with ferromagnetic interactions that decay as 1/r(1+sigma) in the region where the model has a finite critical temperature. We demonstrate the convenience of using this generalization to study finite-size effects, and we compare this approach with the finite-size scaling theory.