Content-Based Music Classification Using Ensemble of Classifiers

被引:1
作者
Anisetty, Manikanta Durga Srinivas [1 ]
Shetty, Gagan K. [1 ]
Hiriyannaiah, Srinidhi [1 ]
Matt, Siddesh Gaddadevara [1 ]
Srinivasa, K. G. [2 ]
Kanavalli, Anita [1 ]
机构
[1] Ramaiah Inst Technol, Bengaluru, India
[2] Ch Brahm Prakash Govt Engn Coll, Delhi, India
来源
INTELLIGENT HUMAN COMPUTER INTERACTION | 2018年 / 11278卷
关键词
Music classification; Machine learning; Ensemble learning; Free music archive;
D O I
10.1007/978-3-030-04021-5_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an application of Ensemble learning in the field of audio data analytics. We propose a system using Hierarchical ensemble model to classify the genre of a music track based on the contents of the track. The hierarchical ensemble comprised of 7 classifiers trained on different sections of the dataset that can co-relate the output of each other for classifying the data. Using this hierarchical ensemble model, we achieved an accuracy boost of 15% over machine learning models. This hierarchical ensemble has been proven better than an ensemble model with hard voting logic in term of accuracy. This work describes the comparison of basic models with hierarchical model and its characteristics.
引用
收藏
页码:285 / 292
页数:8
相关论文
共 21 条
  • [1] [Anonymous], 2017, 18 INT SOC MUS INF R
  • [2] [Anonymous], 2009, Tech. Rep. TR 2009
  • [3] Choi K, 2017, P 34 INT C MACH LEAR
  • [4] Defferrard M., 2016, P ISMIR OCT
  • [5] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [6] Jing Huang, 1998, Proceedings ACM Multimedia 98, P219
  • [7] Hierarchical classification of images by sparse approximation
    Kim, Byung-soo
    Park, Jae Young
    Gilbert, Anna C.
    Savarese, Silvio
    [J]. IMAGE AND VISION COMPUTING, 2013, 31 (12) : 982 - 991
  • [8] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [9] Li T., 2003, P 26 ANN INT ACM SIG, DOI [10.1145/860435.860487, DOI 10.1145/860435.860487, DOI 10.1145/860484.860487]
  • [10] Li T., 2002, ACM SIGKDD Explorations Newsletter, V4, P49, DOI DOI 10.1145/772862.772870