Time-dependent scattering theory on manifolds

被引:4
作者
Ito, K. [1 ]
Skibsted, E. [2 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[2] Aarhus Univ, Inst Matemat Fag, DK-8000 Aarhus C, Denmark
关键词
Scattering theory; Schrodinger operator; Riemannian manifold; Long-range perturbation; SCHRODINGER-OPERATORS;
D O I
10.1016/j.jfa.2019.05.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is the third and the last paper in a series of papers on spectral and scattering theory for the Schrodinger operator on a manifold possessing an escape function, for example a manifold with asymptotically Euclidean and/or hyperbolic ends. Here we discuss the time-dependent scattering theory. A long-range perturbation is allowed, and scattering by obstacles, possibly non-smooth and/or unbounded in a certain way, is included in the theory. We also resolve a conjecture by Hempel-Post-Weder on cross-ends transmissions between two or more ends, formulated in a time-dependent manner. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1423 / 1468
页数:46
相关论文
共 16 条
[1]  
[Anonymous], 1989, T MAT I STEKLOVA, V179, P85
[3]   ASYMPTOTIC CONVERGENCE + COULOMB INTERACTION [J].
DOLLARD, JD .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (06) :729-&
[4]   On open scattering channels for manifolds with ends [J].
Hempel, Rainer ;
Post, Olaf ;
Weder, Ricardo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) :5526-5583
[5]   Free channel Fourier transform in the long-range N-body problem [J].
Herbst, I ;
Skibsted, E .
JOURNAL D ANALYSE MATHEMATIQUE, 1995, 65 :297-332
[6]  
Hormander L., 1990, ANAL LINEAR PARTIAL, VI
[7]  
Isozaki H., 1982, INTEGR EQUAT OPER TH, V5, P18, DOI DOI 10.1007/BF01694028
[8]   Scattering theory for Riemannian Laplacians [J].
Ito, K. ;
Skibsted, E. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (08) :1929-1974
[9]  
Ito K., ARXIV160207488
[10]  
Ito K., ARXIV160207487