A particle tracking method for analyzing chaotic electroosmotic flow mixing in 3D microchannels with patterned charged surfaces

被引:32
作者
Chang, Chih-Chang [1 ]
Yang, Ruey-Jen [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 701, Taiwan
关键词
D O I
10.1088/0960-1317/16/8/003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a numerical simulation investigation into electroosmotic flow mixing in three-dimensional microchannels with patterned non-uniform surface zeta potentials. Three types of micromixers are investigated, namely a straight diagonal strip mixer (i.e. the non-uniform surface zeta potential is applied along straight, diagonal strips on the lower wall of the mixing channel), a staggered asymmetric herringbone strip mixer and a straight diagonal/symmetric herringbone strip mixer. A particle tracing algorithm is used to visualize and evaluate the mixing performance of the various mixers. The particle trajectories and Poincare maps of the various mixers are calculated from the three-dimensional flow fields. The surface charge patterns on the lower walls of the microchannels induce electroosmotic chaotic advection in the low Reynolds number flow regime, and hence enhance the passive mixing effect in the microfluidic devices. A quantitative measure of the mixing performance based on Shannon entropy is employed to quantify the mixing of two miscible fluids. The results show that the mixing efficiency increases as the magnitude of the heterogeneous zeta potential ratio (|zeta(R)|) is increased, but decreases as the aspect ratio (H/W) is increased. The mixing efficiency of the straight diagonal strip mixer with a length ratio of l/W = 0.5 is slightly higher than that obtained from the same mixer with l/W = 1.0. Finally, the staggered asymmetric herringbone strip mixer with theta = 45 degrees, zeta(R) = - 1, l/W = 0.5 and H/W = 0.2 provides the optimal mixing performance of all the mixers presented in this study.
引用
收藏
页码:1453 / 1462
页数:10
相关论文
共 56 条
[1]   ELCTROOSMOSIS ON INHOMOGENEOUSLY CHARGED SURFACES [J].
AJDARI, A .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :755-758
[2]   Generation of transverse fluid currents and forces by an electric field: Electro-osmosis on charge-modulated and undulated surfaces [J].
Ajdari, A .
PHYSICAL REVIEW E, 1996, 53 (05) :4996-5005
[3]   Transverse electrokinetic and microfluidic effects in micropatterned channels: Lubrication analysis for slab geometries [J].
Ajdari, A .
PHYSICAL REVIEW E, 2002, 65 (01) :1-016301
[4]   A minute magneto hydro dynamic (MHD) mixer [J].
Bau, HH ;
Zhong, JH ;
Yi, MQ .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 79 (2-3) :207-215
[5]   Heterogeneous surface charge enhanced micromixing for electrokinetic flows [J].
Biddiss, E ;
Erickson, D ;
Li, DQ .
ANALYTICAL CHEMISTRY, 2004, 76 (11) :3208-3213
[6]   Entropic characterization of mixing in microchannels [J].
Camesasca, M ;
Manas-Zloczower, I ;
Kaufman, M .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (11) :2038-2044
[7]   Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks [J].
Chang, CC ;
Yang, RJ .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2004, 14 (04) :550-558
[8]   Convective and absolute electrokinetic instability with conductivity gradients [J].
Chen, CH ;
Lin, H ;
Lele, SK ;
Santiago, JG .
JOURNAL OF FLUID MECHANICS, 2005, 524 :263-303
[9]   A numerical method for solving incompressible viscous flow problems (Reprinted from the Journal of Computational Physics, vol 2, pg 12-26, 1997) [J].
Chorin, AJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :118-125
[10]   A dielectrophoretic chaotic mixer [J].
Deval, J ;
Tabeling, P ;
Ho, CM .
FIFTEENTH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2002, :36-39