Statistical modelling of cell movement

被引:1
作者
Giurghita, Diana [1 ]
Husmeier, Dirk [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
cell movement; chemotaxis; stochastic differential equations; unscented Kalman filter; KALMAN FILTER; INFERENCE;
D O I
10.1111/stan.12140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Collective cell movement affects vital biological processes in the human organism such as wound healing, immune response, and cancer metastasis. A better understanding of the mechanisms driving cell movement is then essential for the advancement of medical treatments. In this paper, we demonstrate how the unscented Kalman filter, a technique used extensively in engineering in the context of filtering, can be applied to estimate random or directed cell movement. Our proposed model, formulated using stochastic differential equations, is fitted on data describing the movement of Dictyostelium cells, an amoeba routinely used as a proxy for eukaryotic cell movement.
引用
收藏
页码:265 / 280
页数:16
相关论文
共 26 条
  • [1] A Novel Approach for Choosing Summary Statistics in Approximate Bayesian Computation
    Aeschbacher, Simon
    Beaumont, Mark A.
    Futschik, Andreas
    [J]. GENETICS, 2012, 192 (03) : 1027 - +
  • [2] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [3] Kalman filter approach to estimate the demand for international reserves
    Bahmani-Oskooee, M
    Brown, F
    [J]. APPLIED ECONOMICS, 2004, 36 (15) : 1655 - 1668
  • [4] Baker SM, 2011, EURASIP J BIOINFORM, DOI [10.1186/1687-4153-2011-7, 10.1186/1687-4153-2011]
  • [5] Beaumont MA, 2002, GENETICS, V162, P2025
  • [6] Bishop C.M., 2006, PATTERN RECOGN, V4, P738, DOI DOI 10.1117/1.2819119
  • [7] Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit localization
    Choset, H
    Nagatani, K
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (02): : 125 - 137
  • [8] Ferguson EA., 2017, J ROY STAT SOC C, V66, P869, DOI [10.1111/rssc.12203, DOI 10.1111/rssc.12203]
  • [9] Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo
    Golightly, Andrew
    Wilkinson, Darren J.
    [J]. INTERFACE FOCUS, 2011, 1 (06) : 807 - 820
  • [10] Applications of Kalman Filtering in Aerospace 1960 to the Present
    Grewal, Mohinder S.
    Andrews, Angus P.
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2010, 30 (03): : 69 - 78