The existence of maximal elements and equilibria in Frechet spaces

被引:0
作者
Mehta, G
Tan, KK
Yuan, XZ
机构
[1] UNIV QUEENSLAND,DEPT ECON,BRISBANE,QLD 4072,AUSTRALIA
[2] DALHOUSIE UNIV,DEPT MATH STAT & COMP SCI,HALIFAX,NS B3H 3J5,CANADA
[3] UNIV QUEENSLAND,DEPT MATH,BRISBANE,QLD 4072,AUSTRALIA
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1996年 / 49卷 / 3-4期
关键词
condensing mappings; lower semicontinuous; upper semicontinuous; fixed point; maximal element; selection theorem; equilibrium point; abstract economy; generalized game; Frechet space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we first give some existence theorems of maximal elements of condensing correspondences. Then two existence theorems of equilibria of abstract economies (resp., generalized games) are derived by maximal element theorems in Frechet spaces. Finally, a fixed point theorem is proved which improves the corresponding results of BARBOLLA (1985), GALE and MAS-COLELL (1975) and FLORENZANO (1981).
引用
收藏
页码:231 / 242
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 1982, FIXED POINT THEORY
[2]  
Aubin JP., 1982, Mathematical methods of game and economic theory
[4]  
Borglin A., 1976, J MATH ECON, V3, P313, DOI [10.1016/0304-4068(76)90016-1, DOI 10.1016/0304-4068(76)90016-1]
[5]  
BROISOVICH YG, 1980, USP MAT NAUK, V35, P52
[6]   FIXED POINT THEORY OF MULTI-VALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES [J].
BROWDER, FE .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :283-&
[7]   FIXED-POINT THEOREMS FOR MULTIVALUED NONCOMPACT ACYCLIC MAPPINGS [J].
FITZPATRICK, PM ;
PETRYSHYN, WV .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 54 (02) :17-23
[8]  
FLORENZANO M, 1981, PROBLEMS EXISTENCE
[9]  
FURI M, 1969, B UNIONE MAT ITAL, V4, P505
[10]  
Gale D., 1975, J. Math. Econ, V1, P9, DOI DOI 10.1016/0304-4068(75)90009-9