Testing primordial black holes as dark matter with LISA

被引:183
作者
Bartolo, N. [1 ,2 ,3 ]
De Luca, V [4 ,5 ]
Franciolini, G. [4 ,5 ]
Peloso, M. [1 ,2 ]
Racco, D. [4 ,5 ,6 ]
Riotto, A. [4 ,5 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron G Galllei, Via Marzolo 8, I-35131 Padua, Italy
[2] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[3] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy
[4] Dept Theoret Phys, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland
[5] Ctr Astroparticle Phys, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland
[6] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
基金
瑞士国家科学基金会;
关键词
PERTURBATIONS;
D O I
10.1103/PhysRevD.99.103521
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The idea that primordial black holes (PBHs) can comprise most of the dark matter of the Universe has recently reacquired a lot of momentum. Observational constraints, however, rule out this possibility for most of the PBH masses, with a notable exception around 10(-12) M-circle dot. These light PBHs may be originated when a sizable comoving curvature perturbation generated during inflation reenters the horizon during the radiation phase. During such a stage, it is unavoidable that gravitational waves (GWs) are generated. Since their source is quadratic in the curvature perturbations, these GWs are generated fully non-Gaussian. Their frequency today is about a millihertz, which is exactly the range where the LISA mission has the maximum of its sensitivity. This is certainly an impressive coincidence. We show that this scenario of PBHs as dark matter can be tested by LISA by measuring the GW two-point correlator. On the other hand, we show that the short observation time (as compared to the age of the Universe) and propagation effects of the GWs across the perturbed Universe from the production point to the LISA detector suppress the bispectrum to an unobservable level. This suppression is completely general and not specific to our model.
引用
收藏
页数:20
相关论文
共 52 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Gauge-invariant second-order perturbations and non-Gaussianity from inflation [J].
Acquaviva, V ;
Bartolo, N ;
Matarrese, S ;
Riotto, A .
NUCLEAR PHYSICS B, 2003, 667 (1-2) :119-148
[3]   Discriminating between a stochastic gravitational wave background and instrument noise [J].
Adams, Matthew R. ;
Cornish, Neil J. .
PHYSICAL REVIEW D, 2010, 82 (02)
[4]   Cosmological gravitational wave background from primordial density perturbations [J].
Ananda, Kishore N. ;
Clarkson, Chris ;
Wands, David .
PHYSICAL REVIEW D, 2007, 75 (12)
[5]  
[Anonymous], ARXIV170102151
[6]  
[Anonymous], ARXIV181011000
[7]  
[Anonymous], ARXIV170200786
[8]  
Barack L., ARXIV 1806 05195
[9]  
Bartolo N., arXiv:1806.02819
[10]  
Bartolo N., ARXIV181012218