Making Ultrafast High-Capacity Anodes for Lithium-Ion Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites

被引:41
作者
Zoller, Florian [1 ,2 ,3 ]
Peters, Kristina [1 ,4 ]
Zehetmaier, Peter M. [1 ,4 ]
Zeller, Patrick [1 ,4 ]
Doeblinger, Markus [1 ,4 ]
Bein, Thomas [1 ,4 ]
Sofer, Zdenek [5 ]
Fattakhova-Rohlfing, Dina [2 ,3 ,6 ]
机构
[1] Ludwig Maximilians Univ Munchen LMU Munich, Dept Chem, Butenandtstr 5-13 E, D-81377 Munich, Germany
[2] Univ Duisburg Essen, Fac Engn, Lotharstr 1, D-47057 Duisburg, Germany
[3] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Lotharstr 1, D-47057 Duisburg, Germany
[4] Ludwig Maximilians Univ Munchen LMU Munich, Ctr NanoSci CeNS, Butenandtstr 5-13 E, D-81377 Munich, Germany
[5] Univ Chem & Technol, Dept Inorgan Chem, Tech 5, Prague 16628, Czech Republic
[6] Forschungszentrum Julich, Inst Energy & Climate Res IEK Mat Synth & Proc 1, Wilhelm Johnen Str, D-52425 Julich, Germany
关键词
antimony-doped tin oxide; conversion anode materials; graphene nanocomposites; lithium-ion batteries; ultrafast charging; SUPERIOR ELECTROCHEMICAL PERFORMANCE; REDUCED GRAPHENE OXIDE; SNO2; NANOPARTICLES; CYCLING STABILITY; DEPOSITION; CARBON; FILMS; NANOCOMPOSITES; TITANATE; LIFE;
D O I
10.1002/adfm.201706529
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tin oxide-based materials attract increasing attention as anodes in lithium-ion batteries due to their high theoretical capacity, low cost, and high abundance. Composites of such materials with a carbonaceous matrix such as graphene are particularly promising, as they can overcome the limitations of the individual materials. The fabrication of antimony-doped tin oxide (ATO)/graphene hybrid nanocomposites is described with high reversible capacity and superior rate performance using a microwave assisted in situ synthesis in tert-butyl alcohol. This reaction enables the growth of ultrasmall ATO nanoparticles with sizes below 3 nm on the surface of graphene, providing a composite anode material with a high electric conductivity and high structural stability. Antimony doping results in greatly increased lithium insertion rates of this conversion-type anode and an improved cycling stability, presumably due to the increased electrical conductivity. The uniform composites feature gravimetric capacity of 1226 mAh g(-1) at the charging rate 1C and still a high capacity of 577 mAh g(-1) at very high charging rates of up to 60C, as compared to 93 mAh g(-1) at 60C for the undoped composite synthesized in a similar way. At the same time, the antimony-doped anodes demonstrate excellent stability with a capacity retention of 77% after 1000 cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Nanostructured Graphene Oxide-Based Hybrids as Anodes for Lithium-Ion Batteries
    Sehrawat, Poonam
    Abid, Abid
    Islam, Saikh S.
    Mauger, Alain
    Julien, Christian M.
    [J]. C-JOURNAL OF CARBON RESEARCH, 2020, 6 (04):
  • [22] Antimony/reduced graphene oxide composites as advanced anodes for potassium ion batteries
    Wang, Lei
    Jia, Jingjing
    Wu, Ying
    Niu, Kangmin
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (10) : 1115 - 1120
  • [23] Hierarchical Graphene-Scaffolded Silicon/Graphite Composites as High Performance Anodes for Lithium-Ion Batteries
    Zhu, Shanshan
    Zhou, Jianbin
    Guan, Yong
    Cai, Wenlong
    Zhao, Yingyue
    Zhu, Yuanchao
    Zhu, Linqin
    Zhu, Yongchun
    Qian, Yitai
    [J]. SMALL, 2018, 14 (47)
  • [24] Graphene-Encapsulated Copper tin Sulfide Submicron Spheres as High-Capacity Binder-Free Anode for Lithium-Ion Batteries
    Fu, Lin
    Wang, Xiaogang
    Ma, Jun
    Zhang, Chuanjian
    He, Jianjiang
    Xu, Hongxia
    Chai, Jingchao
    Li, Shizhen
    Chai, Fenglian
    Cui, Guanglei
    [J]. CHEMELECTROCHEM, 2017, 4 (05): : 1124 - 1129
  • [25] A high-capacity graphene nanosheet material with capacitive characteristics for the anode of lithium-ion batteries
    Li, Tian
    Gao, Lijun
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (02) : 557 - 561
  • [26] First-principles prediction on antimony-doping effects on the cyclic stability of tin anodes for lithium-ion batteries
    Yu, Jiwon
    Yang, Tsung-Hsuan
    Hao, Wei
    Lee, Myungsuk
    Hwang, Gyeong S.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (29) : 17542 - 17546
  • [27] Si-Mn/Reduced Graphene Oxide Nanocomposite Anodes with Enhanced Capacity and Stability for Lithium-Ion Batteries
    Park, A. Reum
    Kim, Jung Sub
    Kim, Kwang Su
    Zhang, Kan
    Park, Juhyun
    Park, Jong Hyeok
    Lee, Joong Kee
    Yoo, Pil J.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) : 1702 - 1708
  • [28] Cerium vanadate and reduced graphene oxide composites for lithium-ion batteries
    Wang, Wan Lin
    Jang, Jaewon
    Van Hiep Nguyen
    Auxilia, Francis Malar
    Song, Hayong
    Jang, Kyunghoon
    Jin, En Mei
    Lee, Gab-Yong
    Gu, Hal-Bon
    Ham, Moon-Ho
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 724 : 1075 - 1082
  • [29] Graphene as a High-capacity Anode Material for Lithium Ion Batteries
    柳红东
    黄佳木
    LI Xinlu
    LIU Jia
    ZHANG Yuxin
    [J]. Journal of Wuhan University of Technology(Materials Science), 2013, (02) : 220 - 223
  • [30] Graphene as a high-capacity anode material for lithium ion batteries
    Hongdong Liu
    Jiamu Huang
    Xinlu Li
    Jia Liu
    Yuxin Zhang
    [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 220 - 223