Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres

被引:165
作者
Bai, Shouli [1 ]
Zhang, Kewei [1 ]
Wang, Liangshi [2 ,3 ]
Sun, Jianhua [1 ,4 ]
Luo, Ruixian [1 ]
Li, Dianqing [1 ]
Chen, Aifan [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[2] Natl Engn Res Ctr Rare Earth Mat, Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
[3] Grirem Adv Mat Co Ltd, Beijing 100088, Peoples R China
[4] Guangxi Univ, Sch Chem & Chem Engn, Guangxi Key Lab Petrochem Resource Proc & Proc In, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRICAL-CONDUCTIVITY; HOLLOW MICROSPHERES; DOPED WO3; NANOSTRUCTURES; MORPHOLOGIES; PERFORMANCE; NANOWIRES; TRIOXIDE; SENSORS;
D O I
10.1039/c4ta00053f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanosheet-assembled tungsten oxide microspheres have been synthesized using rapid sonochemistry followed by thermal treatment. Transient observation of controllable synthesis reveals that the morphological evolution of the product is highly dependent on the ultrasonication time. An assembly mechanism based on oriented attachment and reconstruction is proposed for the sonochemical formation of the nanosheet-assembled microspheres. The obtained samples possess intrinsic non-stoichiometry and a hierarchically porous nano/microstructure, which is beneficial for their utilization in sensing materials and for fast diffusion of gas molecules. The maximum response of the tungsten oxide hierarchical microspheres is 3 times higher than that of commercial nanoparticles for NO2 gas. The gas adsorption-desorption kinetics during the sensing process were mathematically simulated by a derivative method. The first-principles calculation reveals that the NO2 molecule is most likely adsorbed at the terminal O-1c site of tungsten oxide, leading to the introduction of new surface states, which are responsible for the intrinsic NO2-sensing properties.
引用
收藏
页码:7927 / 7934
页数:8
相关论文
共 35 条
[1]  
[Anonymous], 2013, SENS ACTUATORS B
[2]   Sonochemical synthesis of hierarchically assembled tungsten oxides with excellent NO2-sensing properties [J].
Bai, Shouli ;
Zhang, Kewei ;
Luo, Ruixian ;
Li, Dianqing ;
Chen, Aifan ;
Liu, Chung-Chiun .
MATERIALS LETTERS, 2013, 111 :32-34
[3]   Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2 [J].
Bai, Shouli ;
Zhang, Kewei ;
Luo, Ruixian ;
Li, Dianqing ;
Chen, Aifan ;
Liu, Chung Chiun .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (25) :12643-12650
[4]   Different morphologies of ZnO nanorods and their sensing property [J].
Bai Shouli ;
Chen Liangyuan ;
Li Dianqing ;
Yang Wensheng ;
Yang Pengcheng ;
Liu Zhiyong ;
Chen Aifan ;
Chung Chiun Liu .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 146 (01) :129-137
[5]   Tungsten trioxide (WO3-x) nanoparticles prepared by pulsed laser ablation in water [J].
Barreca, F. ;
Acacia, N. ;
Spadaro, S. ;
Curro, G. ;
Neri, F. .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 127 (1-2) :197-202
[6]   Synthesis of Nanostructured Tungsten Oxide Thin Films: A Simple, Controllable, Inexpensive, Aqueous Sol-Gel Method [J].
Breedon, Michael ;
Spizzirri, Paul ;
Taylor, Matthew ;
du Plessis, Johan ;
McCulloch, Dougal ;
Zhu, Jianmin ;
Yu, Leshu ;
Hu, Zheng ;
Rix, Colin ;
Wlodarski, Wojtek ;
Kalantar-zadeh, Kourosh .
CRYSTAL GROWTH & DESIGN, 2010, 10 (01) :430-439
[7]   The oxygen vacancy in crystal phases of WO3 [J].
Chatten, R ;
Chadwick, AV ;
Rougier, A ;
Lindan, PJD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (08) :3146-3156
[8]   Hydrothermal synthesis of WO3 nanoplates as highly sensitive cyclohexene sensor and high-efficiency MB photocatalyst [J].
Gao, Xiaoqing ;
Su, Xintai ;
Yang, Chao ;
Xiao, Feng ;
Wang, Jide ;
Cao, Xudong ;
Wang, Shoujiang ;
Zhang, Lu .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 181 :537-543
[9]   Using sonochemistry for the fabrication of nanomaterials [J].
Gedanken, A .
ULTRASONICS SONOCHEMISTRY, 2004, 11 (02) :47-55
[10]   Self-assembled tungsten oxide nanowires by electron beam assisted rapid thermal annealing [J].
Gopalakrishnan, C. ;
Ganesh, K. R. ;
Ramaswamy, S. ;
Jeganathan, K. .
MATERIALS LETTERS, 2011, 65 (12) :1941-1944