Shallow silicon sub-wavelength grating waveguide for electro-optical modulation

被引:5
作者
Fouad, Nourhan [1 ]
Badr, Mohamed [2 ]
Fedawy, Mostafa [1 ]
Swillam, Mohamed [2 ]
机构
[1] Arab Acad Sci & Technol & Maritime Transport, Fac Engn, Elect & Commun Dept, POB 2033, Heliopolis, Elhorria, Egypt
[2] Amer Univ Cairo, Sch Sci & Engn, Dept Phys, Cairo 11835, Egypt
关键词
Integrated nanophotonics; Subwavelength grating; Metamaterials; Electrooptic modulation; Electrooptic polymers; Shallow waveguides; OPTICAL MODULATORS; DESIGN;
D O I
10.1016/j.optcom.2020.126098
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
One of the most essential components of optical communication systems is the optical modulator. It provides the needed link between both the optical and electrical domains as it converts the incoming electric signal into an optical data stream. Recently, thanks to the huge advancement in the nanolithography and nanofabrication techniques, subwavelength structures with exotic properties have taken the attention of many researchers. In this work, a novel phenomenon is found and intensively studied. Designing the modulator device to operate at the edge between the Bragg reflection and subwavelength regimes results in a peak taking place at the wavelength of interest. Based on this concept, an electro-optical modulator device based on a subwavelength gratings structure utilizing the 70 nm silicon-on-insulator platform is designed. A very low insertion loss of only 0.07 dB, an extinction ratio of about 18 dB, an ultra small capacitance of 27 fF, a very high speed of 118 GHz and an energy consumption of 169 fJ/bit are achieved at the 1550 nm wavelength.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Study on a New Sub-wavelength Grating for Antireflective Structure of Solar Cell [J].
Xia, Hui-min ;
Song, Kai-hong ;
Wang, Ru-ru ;
Peng, Lu-lu .
2012 10TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION & EM THEORY (ISAPE), 2012, :778-781
[22]   Optimization of Bilayer Sub-Wavelength Metallic Grating Based on Genetic Algorithm [J].
An Chao ;
Chu Jinkui ;
Zhang Ran .
LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (22)
[23]   Label-free biosensing with a multi-box sub-wavelength phase-shifted Bragg grating waveguide [J].
Luan, Enxiao ;
Yun, Han ;
Ma, Mingle ;
Ratner, Daniel M. ;
Cheung, Karen C. ;
Chrostowski, Lukas .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (09) :4825-4838
[24]   Ultra-Compact Sub-Wavelength Grating Polarization Splitter-Rotator for Silicon-on-Insulator Platform [J].
Wang, Yun ;
Ma, Minglei ;
Yun, Han ;
Lu, Zeqin ;
Wang, Xu ;
Jaeger, Nicolas A. F. ;
Chrostowski, Lukas .
IEEE PHOTONICS JOURNAL, 2016, 8 (06)
[25]   Engineering light at the sub-wavelength scale using silicon photonics [J].
Janz, S. ;
Cheben, P. ;
Schmid, J. H. ;
Bock, P. ;
Halir, R. ;
Xu, D. -X. ;
Densmore, A. ;
Ma, R. ;
Bock, P. ;
Molina-Fernandez, I. ;
Delage, A. ;
Vachon, M. ;
Lapointe, J. ;
Sinclair, W. ;
Post, E. ;
Lamontagne, B. .
SILICON PHOTONICS VI, 2011, 7943
[26]   Proposal and analysis of ultra-high amplitude-sensitive refractive index sensor by thick silicon multi-slot sub-wavelength Bragg grating waveguide [J].
Heinsalu, S. ;
Isogai, Y. ;
Kawano, A. ;
Matsushima, Y. ;
Ishikawa, H. ;
Utaka, K. .
OPTICS COMMUNICATIONS, 2022, 505
[27]   Tunable Fabry-Perot THz filter with sub-wavelength grating mirrors [J].
Goebel, Thorsten ;
Schoenherr, Daniel ;
Sydlo, Cezary ;
Roggenbuck, Axel ;
Deninger, Anselm ;
Meissner, Peter ;
Hartnagel, Hans-Ludwig .
PHOTONIC CRYSTAL MATERIALS AND DEVICES VIII, 2008, 6989
[28]   A roll-to-roll sub-wavelength grating applied for a liquid crystal backlight [J].
Lee, Chi-Hung ;
Liu, C. W. ;
Lin, S. C. .
INTERNATIONAL CONFERENCE ON OPTICS IN PRECISION ENGINEERING AND NANOTECHNOLOGY (ICOPEN 2011), 2011, 19
[29]   Sub-Wavelength Grating Enhanced Ultra-Narrow Graphene Perfect Absorber [J].
Zhao, Zengyue ;
Li, Guanhai ;
Yu, Feilong ;
Yang, Hui ;
Chen, Xiaoshuang ;
Lu, Wei .
PLASMONICS, 2018, 13 (06) :2267-2272
[30]   Sub-Wavelength Grating 1 x 4 Power Splitter with Beam Convergence [J].
Huang Cheng ;
Bai Chenglin ;
Fang Wenjing ;
Fan Xinye ;
Jiang Ximei .
LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (03)