Macroscopic conductivity of free fermions in disordered media

被引:5
作者
Bru, J. -B. [1 ,2 ,3 ]
de Siqueira Pedra, W. [4 ]
Hertling, C. [5 ]
机构
[1] Univ Basque Country, Dept Matemat, Fac Ciencia & Tecnol, E-48080 Bilbao, Spain
[2] BCAM Basque Ctr Appl Math Mazarredo, Bilbao 48009, Spain
[3] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
[4] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, BR-05314970 Sao Paulo 16, Brazil
[5] Johannes Gutenberg Univ Mainz, FB Inst Math 08, Mainz, Germany
基金
巴西圣保罗研究基金会;
关键词
Disordered systems; transport processes; conductivity measure; Anderson model; ANDERSON MODEL; FLUCTUATIONS; SYSTEMS;
D O I
10.1142/S0129055X14500081
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We conclude our analysis of the linear response of charge transport in lattice systems of free fermions subjected to a random potential by deriving general mathematical properties of its conductivity at the macroscopic scale. The present paper belongs to a succession of studies on Ohm and Joule's laws from a thermodynamic viewpoint starting with [1-3]. We show, in particular, the existence and finiteness of the conductivity measure mu(Sigma) for macroscopic scales. Then we prove that, similar to the conductivity measure associated to Drude's model, mu(Sigma) converges in the weak*-topology to the trivial measure in the case of perfect insulators (strong disorder, complete localization), whereas in the limit of perfect conductors (absence of disorder) it converges to an atomic measure concentrated at frequency nu = 0. However, the AC-conductivity mu(Sigma)vertical bar(R\{0}) does not vanish in general: We show that mu(Sigma)(R\{0}) > 0, at least for large temperatures and a certain regime of small disorder.
引用
收藏
页数:25
相关论文
共 13 条
[1]  
[Anonymous], LEUVEN NOTES MATH A
[2]  
Bratteli O., 1996, OPERATOR ALGEBRAS QU, VII
[3]  
Bru J. - B., 2013, 1388 MPARC
[4]  
Bru J. - B., 2013, 1368 MPARC
[5]  
Bru J.-B., 2014, COMM PURE A IN PRESS
[6]   THEORY OF QUANTUM FLUCTUATIONS AND THE ONSAGER RELATIONS [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (5-6) :721-746
[7]  
GODERIS D, 1990, LECT NOTES MATH, V1442, P178
[8]   ABOUT THE EXACTNESS OF THE LINEAR RESPONSE THEORY [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (02) :265-283
[9]   NON-COMMUTATIVE CENTRAL LIMITS [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 82 (04) :527-544
[10]   DYNAMICS OF FLUCTUATIONS FOR QUANTUM-LATTICE SYSTEMS [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (03) :533-549