ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATION IN A CYLINDRICAL DOMAIN

被引:1
作者
Kagei, Yoshiyuki [1 ]
Nukumizu, Takumi [2 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
[2] Nihon Jyoho Create Co Ltd, Miyazaki 8850001, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a given constant state is investigated on a cylindrical domain in R-3, under the no slip boundary condition for the velocity field. The L-2 decay estimate is established for the perturbation from the constant state. It is also shown that the time-asymptotic leading part of the perturbation is given by a function satisfying a 1 dimensional heat equation. The proof is based on an energy method and asymptotic analysis for the associated linearized semigroup.
引用
收藏
页码:987 / 1026
页数:40
相关论文
共 17 条
[1]  
Galdi G.P., 1994, INTRO MATH THEORY NA, VI
[2]   Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves [J].
Hoff, D ;
Zumbrun, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (04) :597-614
[3]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676
[4]   Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space [J].
Kagei, Y ;
Kobayashi, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 177 (02) :231-330
[5]   On large-time behavior of solutions to the compressible navier-stokes equations in the half space in R3 [J].
Kagei, Y ;
Kobayashi, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (02) :89-159
[6]   Large time behavior of solutions to the compressible Navier-Stokes equation in an infinite layer [J].
Kagei, Yoshiyuki .
HIROSHIMA MATHEMATICAL JOURNAL, 2008, 38 (01) :95-124
[7]   Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer [J].
Kagei, Yoshiyuki .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (02) :287-337
[8]   Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer [J].
Kagei, Yoshiyuki .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2007, 43 (03) :763-794
[9]  
Kato T., 1980, PERTURBATION THEORY
[10]   FLUID-DYNAMICAL APPROXIMATION TO THE BOLTZMANN-EQUATION AT THE LEVEL OF THE NAVIER-STOKES EQUATION [J].
KAWASHIMA, S ;
MATSUMURA, A ;
NISHIDA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (02) :97-124