Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors

被引:127
作者
Li, Yiju [1 ]
Yu, Neng [2 ]
Yan, Peng [1 ]
Li, Yuguang [3 ]
Zhou, Xuemei [3 ]
Chen, Shuangling [3 ]
Wang, Guiling [1 ]
Wei, Tong [1 ]
Fan, Zhuangjun [1 ]
机构
[1] Harbin Engn Univ, Key Lab Superlight Mat & Surface Technol, Minist Educ, Coll Mat Sci & Chem Engn, Harbin 150001, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Minist Civil Affairs, Inst 101, Beijing 100070, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymmetric supercapacitor; Biomass; Carbon nanosheets; Manganese dioxide; Composite; HIGH-ENERGY; ELECTRODE; MNO2; GRAPHENE/MNO2; NANOSPHERES; HYDROGEL; NICKEL; POWER;
D O I
10.1016/j.jpowsour.2015.09.077
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg(-1) at a power density of 188.8 W kg(-1) within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g(-1). These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:309 / 317
页数:9
相关论文
共 50 条
  • [1] Tailoring Biomass-Derived Carbon Nanoarchitectures for High-Performance Supercapacitors
    Wang, Huanlei
    Li, Zhi
    Mitlin, David
    CHEMELECTROCHEM, 2014, 1 (02): : 302 - 302
  • [2] MnO2 Nanowire/Biomass-Derived Carbon from Hemp Stem for High-Performance Supercapacitors
    Yang, MinHo
    Kim, Donq Seok
    Hong, Seok Bok
    Sim, Jae-Wook
    Kim, Jinsoo
    Kim, Seung-Soo
    Choi, Bong Gill
    LANGMUIR, 2017, 33 (21) : 5140 - 5147
  • [3] Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors
    Li, Yubing
    Zhang, Deyi
    Zhang, Yameng
    He, Jingjing
    Wang, Yulin
    Wang, Kunjie
    Xu, Yangtao
    Li, Hongxia
    Wang, Yi
    JOURNAL OF POWER SOURCES, 2020, 448
  • [4] Top-Down Thickness Reduction Synthesis of Biomass-Derived Carbon Nanosheets with Hierarchical Pore Structure for High-Performance Supercapacitors
    Yuan, Gaozhi
    Wei, Xing
    Zhang, Qing
    CHEMSUSCHEM, 2024, 17 (04)
  • [5] High-performance asymmetric supercapacitor based on urchin-like cobalt manganese oxide nanoneedles and biomass-derived carbon nanosheet electrode materials
    Hamouda, Hamouda Adam
    Cui, Shuzhen
    Dai, Xiuwen
    Xie, Xuan
    Peng, Hui
    Ma, Guofu
    Lei, Ziqiang
    JOURNAL OF ENERGY STORAGE, 2022, 47
  • [6] Synthesis of NiCo2S4 nanosheets coated on biomass activated carbon for high-performance asymmetric supercapacitors
    Xu, Chunyu
    Zhang, Xiuyun
    Zhang, Shining
    Ren, Shijie
    Jiang, Yajuan
    Wang, Chaoying
    Jiang, Kunpeng
    Zhu, Guisheng
    Zhao, Yunyun
    Xu, Huarui
    JOURNAL OF POWER SOURCES, 2025, 642
  • [7] β-Ni(OH)2 Nanosheet Arrays Grown on Biomass-Derived Hollow Carbon Microtubes for High-Performance Asymmetric Supercapacitors
    Li, Qian
    Lu, Chunxiang
    Xiao, Dengji
    Zhang, Huifang
    Chen, Chengmeng
    Xie, Lijing
    Liu, Yaodong
    Yuan, Shuxia
    Kong, Qingqiang
    Zheng, Ke
    Yin, Junqing
    CHEMELECTROCHEM, 2018, 5 (09): : 1279 - 1287
  • [8] Ultrathin manganese dioxide nanosheets grown on partially unzipped nitrogen-doped carbon nanotubes for high-performance asymmetric supercapacitors
    Li, Mengpei
    Chen, Qidi
    Zhan, Hongbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 702 : 236 - 243
  • [9] Synthesis of biomass-derived carbon aerogel/MnOx composite as electrode material for high-performance supercapacitors
    Zhou, Huiming
    Zhan, Yinbo
    Guo, Feiqiang
    Du, Shilin
    Tian, Beile
    Dong, Yichen
    Qian, Lin
    ELECTROCHIMICA ACTA, 2021, 390
  • [10] Silica-Confined Activation for Biomass-Derived Porous Carbon Materials for High-Performance Supercapacitors
    Du, Juan
    Lv, Haijun
    Zhang, Yue
    Chen, Aibing
    CHEMELECTROCHEM, 2021, 8 (11) : 2028 - 2033