Climate Change Increases Reproductive Failure in Magellanic Penguins

被引:89
作者
Boersma, P. Dee [1 ,2 ]
Rebstock, Ginger A. [1 ,2 ]
机构
[1] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[2] Wildlife Conservat Soc, Bronx, NY USA
来源
PLOS ONE | 2014年 / 9卷 / 01期
关键词
POPULATION-DYNAMICS; NEST-SITE; ATMOSPHERIC CIRCULATION; SPHENISCUS-HUMBOLDTI; TEMPERATURE EXTREMES; SURVIVAL ANALYSIS; JACKASS PENGUIN; OBSERVED TRENDS; HEAT-STRESS; EL-NINO;
D O I
10.1371/journal.pone.0085602
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Climate change is causing more frequent and intense storms, and climate models predict this trend will continue, potentially affecting wildlife populations. Since 1960 the number of days with >20 mm of rain increased near Punta Tombo, Argentina. Between 1983 and 2010 we followed 3496 known-age Magellanic penguin (Spheniscus magellanicus) chicks at Punta Tombo to determine how weather impacted their survival. In two years, rain was the most common cause of death killing 50% and 43% of chicks. In 26 years starvation killed the most chicks. Starvation and predation were present in all years. Chicks died in storms in 13 of 28 years and in 16 of 233 storms. Storm mortality was additive; there was no relationship between the number of chicks killed in storms and the numbers that starved (P = 0.75) or that were eaten (P = 0.39). However, when more chicks died in storms, fewer chicks fledged (P = 0.05, R-2 = 0.14). More chicks died when rainfall was higher and air temperature lower. Most chicks died from storms when they were 9-23 days old; the oldest chick killed in a storm was 41 days old. Storms with heavier rainfall killed older chicks as well as more chicks. Chicks up to 70 days old were killed by heat. Burrow nests mitigated storm mortality (N = 1063). The age span of chicks in the colony at any given time increased because the synchrony of egg laying decreased since 1983, lengthening the time when chicks are vulnerable to storms. Climate change that increases the frequency and intensity of storms results in more reproductive failure of Magellanic penguins, a pattern likely to apply to many species breeding in the region. Climate variability has already lowered reproductive success of Magellanic penguins and is likely undermining the resilience of many other species.
引用
收藏
页数:13
相关论文
共 101 条
[1]   The 1976/77 austral summer climate transition effects on the atmospheric circulation and climate in southern South America [J].
Agosta, Eduardo A. ;
Compagnucci, Rosa H. .
JOURNAL OF CLIMATE, 2008, 21 (17) :4365-4383
[2]  
[Anonymous], ATLES DISTRIBUCION R
[3]  
[Anonymous], HDB BIRDS WORLD
[4]  
[Anonymous], 2002, Model selection and multimodel inference: a practical informationtheoretic approach
[5]  
[Anonymous], NAT CLIM CHANGE
[6]  
[Anonymous], INFLUENCE NEST SITE
[7]  
BIRKHEAD TR, 1976, BRIT BIRDS, V69, P490
[8]  
Boersma D., 1975, P101
[9]  
Boersma P.D., 1992, Acta XX Congressus Internationalis Ornithologici, V20, P961
[10]  
Boersma P. D., 1990, PENGUIN BIOL, P15