Introduction of nitrogen with controllable configuration into graphene via vacancies and edges

被引:45
作者
Wang, Bin [1 ]
Tsetseris, Leonidas [1 ,2 ]
Pantelides, Sokrates T. [1 ,3 ,4 ]
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[2] Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece
[3] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
HIGH ELECTROCATALYTIC ACTIVITY; N-DOPED GRAPHENE; PERFORMANCE; FUNCTIONALIZATION; PSEUDOPOTENTIALS; CATALYSTS; COVALENT; ZIGZAG; ARRAYS; BORON;
D O I
10.1039/c3ta13610h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Doping with nitrogen in controllable configurations is very valuable to tailor the properties of graphene. Here we report density-functional theory calculations of chemical reactions of ammonia, a widely used nitrogen source, at vacancies and edges of graphene, through which we explore strategies to achieve N-doped graphene with optimized properties. We show that at different defects, ammonia reacts to form nitrogen impurities in distinct configurations, i.e. graphitic-N at single vacancies, pyridinic- or pyrrolic-N at divacancies, pyrrolic-N at armchair edges, and N in a four-member ring at zigzag edges. Moreover, different nitrogen-related defect configurations introduce distinct changes in the electronic structure of graphene. By calculating the core level shift of C-1s electrons, we find configuration-dependent redistribution of electrons around the N-dopant. A discussion of how to achieve optimized doping and enhanced chemical reactivity in experiments is included.
引用
收藏
页码:14927 / 14934
页数:8
相关论文
共 74 条
[1]   Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene [J].
Ahlgren, E. H. ;
Kotakoski, J. ;
Krasheninnikov, A. V. .
PHYSICAL REVIEW B, 2011, 83 (11)
[2]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[3]   Ion Implantation of Graphene-Toward IC Compatible Technologies [J].
Bangert, U. ;
Pierce, W. ;
Kepaptsoglou, D. M. ;
Ramasse, Q. ;
Zan, R. ;
Gass, M. H. ;
Van den Berg, J. A. ;
Boothroyd, C. B. ;
Amani, J. ;
Hofsaess, H. .
NANO LETTERS, 2013, 13 (10) :4902-4907
[4]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[5]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[6]   Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons [J].
Biel, Blanca ;
Blase, X. ;
Triozon, Francois ;
Roche, Stephan .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[7]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[8]   Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties [J].
Cervantes-Sodi, F. ;
Csanyi, G. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2008, 77 (16)
[9]   B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media [J].
Choi, Chang Hyuck ;
Chung, Min Wook ;
Kwon, Han Chang ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3694-3699
[10]   Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles [J].
Cruz-Silva, E. ;
Barnett, Z. M. ;
Sumpter, B. G. ;
Meunier, V. .
PHYSICAL REVIEW B, 2011, 83 (15)